Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To identify the radius and the center of the circle given its equation [tex]\((x - 5)^2 + y^2 = 81\)[/tex], we can proceed with the following steps:
### Step-by-Step Solution:
1. Recognize the standard form of a circle's equation:
The standard form of a circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] represents the center of the circle and [tex]\(r\)[/tex] represents the radius.
2. Compare the given equation with the standard form:
The given equation is [tex]\((x - 5)^2 + y^2 = 81\)[/tex]. By comparing it with the general form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can identify the values of [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(r^2\)[/tex]:
- [tex]\(h = 5\)[/tex]
- [tex]\(k = 0\)[/tex]
- [tex]\(r^2 = 81\)[/tex]
3. Identify the center of the circle [tex]\((h, k)\)[/tex]:
Using the values identified above:
- [tex]\(h = 5\)[/tex]
- [tex]\(k = 0\)[/tex]
Therefore, the center of the circle is at [tex]\((5, 0)\)[/tex].
4. Determine the radius [tex]\(r\)[/tex]:
Since [tex]\(r^2 = 81\)[/tex], we take the square root of both sides to find the radius:
[tex]\[ r = \sqrt{81} = 9 \][/tex]
### Final Answer:
- The radius of the circle is [tex]\(9\)[/tex] units.
- The center of the circle is at [tex]\((5, 0)\)[/tex].
Thus:
- The radius of the circle is [tex]\(9\)[/tex] units.
- The center of the circle is at [tex]\((5, 0)\)[/tex].
### Step-by-Step Solution:
1. Recognize the standard form of a circle's equation:
The standard form of a circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] represents the center of the circle and [tex]\(r\)[/tex] represents the radius.
2. Compare the given equation with the standard form:
The given equation is [tex]\((x - 5)^2 + y^2 = 81\)[/tex]. By comparing it with the general form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we can identify the values of [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(r^2\)[/tex]:
- [tex]\(h = 5\)[/tex]
- [tex]\(k = 0\)[/tex]
- [tex]\(r^2 = 81\)[/tex]
3. Identify the center of the circle [tex]\((h, k)\)[/tex]:
Using the values identified above:
- [tex]\(h = 5\)[/tex]
- [tex]\(k = 0\)[/tex]
Therefore, the center of the circle is at [tex]\((5, 0)\)[/tex].
4. Determine the radius [tex]\(r\)[/tex]:
Since [tex]\(r^2 = 81\)[/tex], we take the square root of both sides to find the radius:
[tex]\[ r = \sqrt{81} = 9 \][/tex]
### Final Answer:
- The radius of the circle is [tex]\(9\)[/tex] units.
- The center of the circle is at [tex]\((5, 0)\)[/tex].
Thus:
- The radius of the circle is [tex]\(9\)[/tex] units.
- The center of the circle is at [tex]\((5, 0)\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.