Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the coordinates of the vertex of the parabola represented by the equation [tex]\( y = x^2 - 4x + 3 \)[/tex], we use the standard formula for finding the vertex of a quadratic equation in the form [tex]\( y = ax^2 + bx + c \)[/tex].
Given the quadratic equation [tex]\( y = x^2 - 4x + 3 \)[/tex]:
- The coefficient [tex]\( a \)[/tex] is 1.
- The coefficient [tex]\( b \)[/tex] is -4.
- The constant term [tex]\( c \)[/tex] is 3.
The x-coordinate of the vertex of a parabola can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ x = -\frac{-4}{2 \cdot 1} = \frac{4}{2} = 2 \][/tex]
Next, we find the y-coordinate of the vertex by substituting [tex]\( x = 2 \)[/tex] back into the original quadratic equation:
[tex]\[ y = 1 \cdot (2)^2 - 4 \cdot 2 + 3 \][/tex]
[tex]\[ y = 4 - 8 + 3 \][/tex]
[tex]\[ y = -4 + 3 \][/tex]
[tex]\[ y = -1 \][/tex]
So, the coordinates of the vertex are:
[tex]\[ (2, -1) \][/tex]
The correct answer is:
[tex]\[ (2, -1) \][/tex]
None of the provided options match this result. It appears there may be a typo or error in the provided answer choices. The actual coordinates of the vertex are [tex]\( (2, -1) \)[/tex].
Given the quadratic equation [tex]\( y = x^2 - 4x + 3 \)[/tex]:
- The coefficient [tex]\( a \)[/tex] is 1.
- The coefficient [tex]\( b \)[/tex] is -4.
- The constant term [tex]\( c \)[/tex] is 3.
The x-coordinate of the vertex of a parabola can be found using the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ x = -\frac{-4}{2 \cdot 1} = \frac{4}{2} = 2 \][/tex]
Next, we find the y-coordinate of the vertex by substituting [tex]\( x = 2 \)[/tex] back into the original quadratic equation:
[tex]\[ y = 1 \cdot (2)^2 - 4 \cdot 2 + 3 \][/tex]
[tex]\[ y = 4 - 8 + 3 \][/tex]
[tex]\[ y = -4 + 3 \][/tex]
[tex]\[ y = -1 \][/tex]
So, the coordinates of the vertex are:
[tex]\[ (2, -1) \][/tex]
The correct answer is:
[tex]\[ (2, -1) \][/tex]
None of the provided options match this result. It appears there may be a typo or error in the provided answer choices. The actual coordinates of the vertex are [tex]\( (2, -1) \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.