At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Firstly, let's break down the problem into manageable steps and analyze the provided polynomial [tex]\( P(x) = x^3 - x^2 - 4x + 4 \)[/tex].
### (a) Solving [tex]\( P(x) = 0 \)[/tex]
Given the polynomial [tex]\( P(x) = (x - 2)(x - 1)(x + 2) \)[/tex]:
To find the roots, we set [tex]\( P(x) = 0 \)[/tex]:
[tex]\[ (x - 2)(x - 1)(x + 2) = 0 \][/tex]
The roots (the values of [tex]\( x \)[/tex] that make [tex]\( P(x) = 0 \)[/tex]) can be found by setting each factor equal to zero:
[tex]\[ x - 2 = 0 \implies x = 2 \][/tex]
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
[tex]\[ x + 2 = 0 \implies x = -2 \][/tex]
Therefore, the solution set for [tex]\( P(x) = 0 \)[/tex] is:
[tex]\[ \{ -2, 1, 2 \} \][/tex]
### (b) Solving [tex]\( P(x) < 0 \)[/tex]
To solve the inequality [tex]\( P(x) < 0 \)[/tex], we need to find the intervals where the polynomial is negative.
Since [tex]\( P(x) = (x - 2)(x - 1)(x + 2) \)[/tex], we can analyze the sign of the product over the intervals determined by the roots [tex]\( -2, 1, \)[/tex] and [tex]\( 2 \)[/tex]:
1. For [tex]\( x \in (-\infty, -2) \)[/tex]:
- All three factors are negative (negative [tex]\(\times\)[/tex] negative [tex]\(\times\)[/tex] negative = negative).
2. For [tex]\( x \in (-2, 1) \)[/tex]:
- The factor [tex]\( (x + 2) \)[/tex] is positive, while [tex]\( (x - 1) \)[/tex] and [tex]\( (x - 2) \)[/tex] are negative (positive [tex]\(\times\)[/tex] negative [tex]\(\times\)[/tex] negative = positive).
3. For [tex]\( x \in (1, 2) \)[/tex]:
- The factor [tex]\( (x - 1) \)[/tex] is positive, [tex]\( (x - 2) \)[/tex] is negative, and [tex]\( (x + 2) \)[/tex] is positive (positive [tex]\(\times\)[/tex] positive [tex]\(\times\)[/tex] negative = negative).
4. For [tex]\( x \in (2, \infty) \)[/tex]:
- All three factors are positive (positive [tex]\(\times\)[/tex] positive [tex]\(\times\)[/tex] positive = positive).
Therefore, [tex]\( P(x) < 0 \)[/tex] for the intervals:
[tex]\[ (-\infty, -2) \cup (1, 2) \][/tex]
### (c) Solving [tex]\( P(x) > 0 \)[/tex]
Similarly, to solve the inequality [tex]\( P(x) > 0 \)[/tex], we look at where the polynomial is positive:
From our analysis above, [tex]\( P(x) > 0 \)[/tex] for the intervals:
[tex]\[ (-2, 1) \cup (2, \infty) \][/tex]
In conclusion:
- (a) The solution for [tex]\( P(x) = 0 \)[/tex] is [tex]\(\{ -2, 1, 2 \}\)[/tex].
- (b) The solution set for [tex]\( P(x) < 0 \)[/tex] is [tex]\( (-\infty, -2) \cup (1, 2) \)[/tex].
- (c) The solution set for [tex]\( P(x) > 0 \)[/tex] is [tex]\( (-2, 1) \cup (2, \infty) \)[/tex].
### (a) Solving [tex]\( P(x) = 0 \)[/tex]
Given the polynomial [tex]\( P(x) = (x - 2)(x - 1)(x + 2) \)[/tex]:
To find the roots, we set [tex]\( P(x) = 0 \)[/tex]:
[tex]\[ (x - 2)(x - 1)(x + 2) = 0 \][/tex]
The roots (the values of [tex]\( x \)[/tex] that make [tex]\( P(x) = 0 \)[/tex]) can be found by setting each factor equal to zero:
[tex]\[ x - 2 = 0 \implies x = 2 \][/tex]
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
[tex]\[ x + 2 = 0 \implies x = -2 \][/tex]
Therefore, the solution set for [tex]\( P(x) = 0 \)[/tex] is:
[tex]\[ \{ -2, 1, 2 \} \][/tex]
### (b) Solving [tex]\( P(x) < 0 \)[/tex]
To solve the inequality [tex]\( P(x) < 0 \)[/tex], we need to find the intervals where the polynomial is negative.
Since [tex]\( P(x) = (x - 2)(x - 1)(x + 2) \)[/tex], we can analyze the sign of the product over the intervals determined by the roots [tex]\( -2, 1, \)[/tex] and [tex]\( 2 \)[/tex]:
1. For [tex]\( x \in (-\infty, -2) \)[/tex]:
- All three factors are negative (negative [tex]\(\times\)[/tex] negative [tex]\(\times\)[/tex] negative = negative).
2. For [tex]\( x \in (-2, 1) \)[/tex]:
- The factor [tex]\( (x + 2) \)[/tex] is positive, while [tex]\( (x - 1) \)[/tex] and [tex]\( (x - 2) \)[/tex] are negative (positive [tex]\(\times\)[/tex] negative [tex]\(\times\)[/tex] negative = positive).
3. For [tex]\( x \in (1, 2) \)[/tex]:
- The factor [tex]\( (x - 1) \)[/tex] is positive, [tex]\( (x - 2) \)[/tex] is negative, and [tex]\( (x + 2) \)[/tex] is positive (positive [tex]\(\times\)[/tex] positive [tex]\(\times\)[/tex] negative = negative).
4. For [tex]\( x \in (2, \infty) \)[/tex]:
- All three factors are positive (positive [tex]\(\times\)[/tex] positive [tex]\(\times\)[/tex] positive = positive).
Therefore, [tex]\( P(x) < 0 \)[/tex] for the intervals:
[tex]\[ (-\infty, -2) \cup (1, 2) \][/tex]
### (c) Solving [tex]\( P(x) > 0 \)[/tex]
Similarly, to solve the inequality [tex]\( P(x) > 0 \)[/tex], we look at where the polynomial is positive:
From our analysis above, [tex]\( P(x) > 0 \)[/tex] for the intervals:
[tex]\[ (-2, 1) \cup (2, \infty) \][/tex]
In conclusion:
- (a) The solution for [tex]\( P(x) = 0 \)[/tex] is [tex]\(\{ -2, 1, 2 \}\)[/tex].
- (b) The solution set for [tex]\( P(x) < 0 \)[/tex] is [tex]\( (-\infty, -2) \cup (1, 2) \)[/tex].
- (c) The solution set for [tex]\( P(x) > 0 \)[/tex] is [tex]\( (-2, 1) \cup (2, \infty) \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.