Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the sum [tex]\(1 + 2 + 3 + \ldots + 270\)[/tex] using the method of Carl Friedrich Gauss, we can recognize the pattern and symmetry within the sequence.
### Steps:
1. Identify the sequence and number of terms:
The sequence given is [tex]\(1, 2, 3, \ldots, 270\)[/tex]. This sequence is an arithmetic series with:
- The first term ([tex]\(a_1\)[/tex]) = 1
- The last term ([tex]\(a_n\)[/tex]) = 270
- The total number of terms ([tex]\(n\)[/tex]) = 270
2. Pair the numbers:
Gauss observed that by pairing the first term with the last term, the second term with the second-last term, and so on, each pair would sum to a constant value.
For our sequence, we have pairs such as:
[tex]\[ (1 + 270), (2 + 269), (3 + 268), \ldots, (135 + 136) \][/tex]
3. Calculate the sum of each pair:
Notice that each such pair sums to:
[tex]\[ 1 + 270 = 271, \quad 2 + 269 = 271, \quad 3 + 268 = 271, \quad \ldots, \quad 135 + 136 = 271 \][/tex]
So, each pair has a total sum of [tex]\(271\)[/tex].
4. Determine the number of pairs:
As [tex]\(270\)[/tex] terms are paired, we can divide the total number of terms by 2 to get the number of pairs:
[tex]\[ \frac{270}{2} = 135 \][/tex]
5. Compute the total sum:
The total sum of the sequence is the number of pairs multiplied by the sum of each pair:
[tex]\[ 135 \times 271 = 36585 \][/tex]
Thus, the sum of the sequence from 1 to 270 is:
[tex]\[ \boxed{36585} \][/tex]
### Steps:
1. Identify the sequence and number of terms:
The sequence given is [tex]\(1, 2, 3, \ldots, 270\)[/tex]. This sequence is an arithmetic series with:
- The first term ([tex]\(a_1\)[/tex]) = 1
- The last term ([tex]\(a_n\)[/tex]) = 270
- The total number of terms ([tex]\(n\)[/tex]) = 270
2. Pair the numbers:
Gauss observed that by pairing the first term with the last term, the second term with the second-last term, and so on, each pair would sum to a constant value.
For our sequence, we have pairs such as:
[tex]\[ (1 + 270), (2 + 269), (3 + 268), \ldots, (135 + 136) \][/tex]
3. Calculate the sum of each pair:
Notice that each such pair sums to:
[tex]\[ 1 + 270 = 271, \quad 2 + 269 = 271, \quad 3 + 268 = 271, \quad \ldots, \quad 135 + 136 = 271 \][/tex]
So, each pair has a total sum of [tex]\(271\)[/tex].
4. Determine the number of pairs:
As [tex]\(270\)[/tex] terms are paired, we can divide the total number of terms by 2 to get the number of pairs:
[tex]\[ \frac{270}{2} = 135 \][/tex]
5. Compute the total sum:
The total sum of the sequence is the number of pairs multiplied by the sum of each pair:
[tex]\[ 135 \times 271 = 36585 \][/tex]
Thus, the sum of the sequence from 1 to 270 is:
[tex]\[ \boxed{36585} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.