Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the point-slope form of a line with slope [tex]\frac{4}{5}[/tex] that contains the point [tex]\((-2,1)\)[/tex]?

A. [tex]y+1=\frac{4}{5}(x-2)[/tex]
B. [tex]y+1=\frac{4}{5}(x+2)[/tex]
C. [tex]y-1=\frac{4}{5}(x+2)[/tex]
D. [tex]y-1=\frac{4}{5}(x-2)[/tex]


Sagot :

Sure, let's find the point-slope form of the equation for a line that has a slope of [tex]\(\frac{4}{5}\)[/tex] and passes through the point [tex]\((-2, 1)\)[/tex].

The point-slope form of the equation of a line is given by:

[tex]\[ y - y_1 = m(x - x_1) \][/tex]

where [tex]\( m \)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.

Here, the slope [tex]\( m \)[/tex] is [tex]\(\frac{4}{5}\)[/tex], and the point [tex]\((x_1, y_1)\)[/tex] is [tex]\((-2, 1)\)[/tex].

Let's substitute the given values into the point-slope form equation:

[tex]\[ y - 1 = \frac{4}{5}(x - (-2)) \][/tex]

Simplify the expression inside the parentheses:

[tex]\[ y - 1 = \frac{4}{5}(x + 2) \][/tex]

So, the point-slope form of the line is:

[tex]\[ y - 1 = \frac{4}{5}(x + 2) \][/tex]

Now, let's compare this with the given options:

A. [tex]\( y + 1 = \frac{4}{5}(x - 2) \)[/tex]

B. [tex]\( y + 1 = \frac{4}{5}(x + 2) \)[/tex]

C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]

D. [tex]\( y - 1 = \frac{4}{5}(x - 2) \)[/tex]

The correct equation from our calculation is [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex], which matches option:

C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]

Thus, the correct answer is:

C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]