Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's find the point-slope form of the equation for a line that has a slope of [tex]\(\frac{4}{5}\)[/tex] and passes through the point [tex]\((-2, 1)\)[/tex].
The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
Here, the slope [tex]\( m \)[/tex] is [tex]\(\frac{4}{5}\)[/tex], and the point [tex]\((x_1, y_1)\)[/tex] is [tex]\((-2, 1)\)[/tex].
Let's substitute the given values into the point-slope form equation:
[tex]\[ y - 1 = \frac{4}{5}(x - (-2)) \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ y - 1 = \frac{4}{5}(x + 2) \][/tex]
So, the point-slope form of the line is:
[tex]\[ y - 1 = \frac{4}{5}(x + 2) \][/tex]
Now, let's compare this with the given options:
A. [tex]\( y + 1 = \frac{4}{5}(x - 2) \)[/tex]
B. [tex]\( y + 1 = \frac{4}{5}(x + 2) \)[/tex]
C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]
D. [tex]\( y - 1 = \frac{4}{5}(x - 2) \)[/tex]
The correct equation from our calculation is [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex], which matches option:
C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]
Thus, the correct answer is:
C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]
The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
Here, the slope [tex]\( m \)[/tex] is [tex]\(\frac{4}{5}\)[/tex], and the point [tex]\((x_1, y_1)\)[/tex] is [tex]\((-2, 1)\)[/tex].
Let's substitute the given values into the point-slope form equation:
[tex]\[ y - 1 = \frac{4}{5}(x - (-2)) \][/tex]
Simplify the expression inside the parentheses:
[tex]\[ y - 1 = \frac{4}{5}(x + 2) \][/tex]
So, the point-slope form of the line is:
[tex]\[ y - 1 = \frac{4}{5}(x + 2) \][/tex]
Now, let's compare this with the given options:
A. [tex]\( y + 1 = \frac{4}{5}(x - 2) \)[/tex]
B. [tex]\( y + 1 = \frac{4}{5}(x + 2) \)[/tex]
C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]
D. [tex]\( y - 1 = \frac{4}{5}(x - 2) \)[/tex]
The correct equation from our calculation is [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex], which matches option:
C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]
Thus, the correct answer is:
C. [tex]\( y - 1 = \frac{4}{5}(x + 2) \)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.