Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the inequality [tex]\( |x+2| < 2 \)[/tex], we need to understand the properties of absolute values. The absolute value inequality [tex]\( |A| < B \)[/tex] can be rewritten as two combined inequalities: [tex]\( -B < A < B \)[/tex].
### Step-by-Step Solution:
1. Rewrite the Inequality:
[tex]\[ |x + 2| < 2 \][/tex]
This can be rewritten as:
[tex]\[ -2 < x + 2 < 2 \][/tex]
2. Isolate [tex]\(x\)[/tex] in the Inequality:
To isolate [tex]\(x\)[/tex], subtract 2 from all parts of the inequality:
[tex]\[ -2 - 2 < x + 2 - 2 < 2 - 2 \][/tex]
Simplifying this gives:
[tex]\[ -4 < x < 0 \][/tex]
### Solution:
The solution to the inequality is:
[tex]\[ -4 < x < 0 \][/tex]
### Graphing the Solution:
On a number line, this solution translates to:
- An open interval from [tex]\( -4 \)[/tex] to [tex]\( 0 \)[/tex], meaning [tex]\( x \)[/tex] lies between [tex]\( -4 \)[/tex] and [tex]\( 0 \)[/tex], but does not include [tex]\( -4 \)[/tex] and [tex]\( 0 \)[/tex] themselves.
### Match with Given Choices:
- A states: [tex]\( x > -4 \)[/tex] and [tex]\( x < 0 \)[/tex].
While the description [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex] correctly describes the solution, this repetition suggests there might be a typo hence the same option repeated is considered again.
- B states: [tex]\( x > -4 \)[/tex] and [tex]\( x < 0 \)[/tex].
Similar point again as in A.
- C incorrectly states: [tex]\( x < -4 \)[/tex] or [tex]\( x > 0 \)[/tex]. This describes a different set of solutions outside of our desired interval.
Therefore, the correct choice is:
A. Solution: [tex]\( x > -4 \)[/tex] and [tex]\( x < 0 \)[/tex]
### Step-by-Step Solution:
1. Rewrite the Inequality:
[tex]\[ |x + 2| < 2 \][/tex]
This can be rewritten as:
[tex]\[ -2 < x + 2 < 2 \][/tex]
2. Isolate [tex]\(x\)[/tex] in the Inequality:
To isolate [tex]\(x\)[/tex], subtract 2 from all parts of the inequality:
[tex]\[ -2 - 2 < x + 2 - 2 < 2 - 2 \][/tex]
Simplifying this gives:
[tex]\[ -4 < x < 0 \][/tex]
### Solution:
The solution to the inequality is:
[tex]\[ -4 < x < 0 \][/tex]
### Graphing the Solution:
On a number line, this solution translates to:
- An open interval from [tex]\( -4 \)[/tex] to [tex]\( 0 \)[/tex], meaning [tex]\( x \)[/tex] lies between [tex]\( -4 \)[/tex] and [tex]\( 0 \)[/tex], but does not include [tex]\( -4 \)[/tex] and [tex]\( 0 \)[/tex] themselves.
### Match with Given Choices:
- A states: [tex]\( x > -4 \)[/tex] and [tex]\( x < 0 \)[/tex].
While the description [tex]\(x > -4\)[/tex] and [tex]\(x < 0\)[/tex] correctly describes the solution, this repetition suggests there might be a typo hence the same option repeated is considered again.
- B states: [tex]\( x > -4 \)[/tex] and [tex]\( x < 0 \)[/tex].
Similar point again as in A.
- C incorrectly states: [tex]\( x < -4 \)[/tex] or [tex]\( x > 0 \)[/tex]. This describes a different set of solutions outside of our desired interval.
Therefore, the correct choice is:
A. Solution: [tex]\( x > -4 \)[/tex] and [tex]\( x < 0 \)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.