Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the inequality [tex]\( |2x - 4| \leq 8 \)[/tex], we need to consider the definition of absolute value, which states that [tex]\( |a| \leq b \)[/tex] if and only if [tex]\( -b \leq a \leq b \)[/tex].
Given [tex]\( |2x - 4| \leq 8 \)[/tex], we can write this as:
[tex]\[ -8 \leq 2x - 4 \leq 8 \][/tex]
We will solve this compound inequality in two steps.
### Step 1: Solving the left inequality
[tex]\[ -8 \leq 2x - 4 \][/tex]
Add 4 to both sides:
[tex]\[ -8 + 4 \leq 2x - 4 + 4 \][/tex]
[tex]\[ -4 \leq 2x \][/tex]
Divide both sides by 2:
[tex]\[ -\frac{4}{2} \leq \frac{2x}{2} \][/tex]
[tex]\[ -2 \leq x \][/tex]
### Step 2: Solving the right inequality
[tex]\[ 2x - 4 \leq 8 \][/tex]
Add 4 to both sides:
[tex]\[ 2x - 4 + 4 \leq 8 + 4 \][/tex]
[tex]\[ 2x \leq 12 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{2x}{2} \leq \frac{12}{2} \][/tex]
[tex]\[ x \leq 6 \][/tex]
### Combining the results
Combining the two parts of the compound inequality, we get:
[tex]\[ -2 \leq x \leq 6 \][/tex]
Therefore, the solution to [tex]\( |2x - 4| \leq 8 \)[/tex] is:
[tex]\[ x \geq -2 \text{ and } x \leq 6 \][/tex]
This matches option B.
So, the answer is:
B. [tex]\( x \geq -2 \text{ and } x \leq 6 \)[/tex]
Given [tex]\( |2x - 4| \leq 8 \)[/tex], we can write this as:
[tex]\[ -8 \leq 2x - 4 \leq 8 \][/tex]
We will solve this compound inequality in two steps.
### Step 1: Solving the left inequality
[tex]\[ -8 \leq 2x - 4 \][/tex]
Add 4 to both sides:
[tex]\[ -8 + 4 \leq 2x - 4 + 4 \][/tex]
[tex]\[ -4 \leq 2x \][/tex]
Divide both sides by 2:
[tex]\[ -\frac{4}{2} \leq \frac{2x}{2} \][/tex]
[tex]\[ -2 \leq x \][/tex]
### Step 2: Solving the right inequality
[tex]\[ 2x - 4 \leq 8 \][/tex]
Add 4 to both sides:
[tex]\[ 2x - 4 + 4 \leq 8 + 4 \][/tex]
[tex]\[ 2x \leq 12 \][/tex]
Divide both sides by 2:
[tex]\[ \frac{2x}{2} \leq \frac{12}{2} \][/tex]
[tex]\[ x \leq 6 \][/tex]
### Combining the results
Combining the two parts of the compound inequality, we get:
[tex]\[ -2 \leq x \leq 6 \][/tex]
Therefore, the solution to [tex]\( |2x - 4| \leq 8 \)[/tex] is:
[tex]\[ x \geq -2 \text{ and } x \leq 6 \][/tex]
This matches option B.
So, the answer is:
B. [tex]\( x \geq -2 \text{ and } x \leq 6 \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.