Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the compound inequality [tex]\(-5 < 4x + 3 \leq 7\)[/tex], we will break it down into two parts and solve each part separately, then combine the results.
### Step 1: Solve [tex]\(-5 < 4x + 3\)[/tex]
1. Start with the inequality: [tex]\(-5 < 4x + 3\)[/tex]
2. Subtract 3 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -5 - 3 < 4x \][/tex]
3. Simplify the left side:
[tex]\[ -8 < 4x \][/tex]
4. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ -8 / 4 < x \Rightarrow -2 < x \][/tex]
### Step 2: Solve [tex]\(4x + 3 \leq 7\)[/tex]
1. Start with the inequality: [tex]\(4x + 3 \leq 7\)[/tex]
2. Subtract 3 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ 4x + 3 - 3 \leq 7 - 3 \][/tex]
3. Simplify the right side:
[tex]\[ 4x \leq 4 \][/tex]
4. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ 4 / 4 \leq x \Rightarrow x \leq 1 \][/tex]
### Step 3: Combine the results
Putting the results from the two parts together:
[tex]\[ -2 < x \quad \text{and} \quad x \leq 1 \][/tex]
Therefore, the solution to the inequality [tex]\(-5 < 4x + 3 \leq 7\)[/tex] is:
[tex]\[ -2 < x \leq 1 \][/tex]
Among the given options, the one that correctly represents this solution is:
[tex]\[ \text{C. } x > -2 \text{ and } x \leq 1 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
### Step 1: Solve [tex]\(-5 < 4x + 3\)[/tex]
1. Start with the inequality: [tex]\(-5 < 4x + 3\)[/tex]
2. Subtract 3 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -5 - 3 < 4x \][/tex]
3. Simplify the left side:
[tex]\[ -8 < 4x \][/tex]
4. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ -8 / 4 < x \Rightarrow -2 < x \][/tex]
### Step 2: Solve [tex]\(4x + 3 \leq 7\)[/tex]
1. Start with the inequality: [tex]\(4x + 3 \leq 7\)[/tex]
2. Subtract 3 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ 4x + 3 - 3 \leq 7 - 3 \][/tex]
3. Simplify the right side:
[tex]\[ 4x \leq 4 \][/tex]
4. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ 4 / 4 \leq x \Rightarrow x \leq 1 \][/tex]
### Step 3: Combine the results
Putting the results from the two parts together:
[tex]\[ -2 < x \quad \text{and} \quad x \leq 1 \][/tex]
Therefore, the solution to the inequality [tex]\(-5 < 4x + 3 \leq 7\)[/tex] is:
[tex]\[ -2 < x \leq 1 \][/tex]
Among the given options, the one that correctly represents this solution is:
[tex]\[ \text{C. } x > -2 \text{ and } x \leq 1 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.