Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To express the quadratic expression [tex]\(x^2 - 8x + 10\)[/tex] in the form [tex]\((x + a)^2 + b\)[/tex], follow these steps:
### Step 1: Write the Quadratic Expression
Starting with the quadratic expression:
[tex]\[ x^2 - 8x + 10 \][/tex]
### Step 2: Identify the Coefficient of [tex]\(x\)[/tex]
Look at the coefficient of the linear term [tex]\(x\)[/tex], which is [tex]\(-8\)[/tex].
### Step 3: Complete the Square
To complete the square, take half of the coefficient of [tex]\(x\)[/tex] and square it. The coefficient of [tex]\(x\)[/tex] is [tex]\(-8\)[/tex], so:
[tex]\[ \left(\frac{-8}{2}\right)^2 = 16 \][/tex]
Now, add and subtract this square inside the expression:
[tex]\[ x^2 - 8x + 16 - 16 + 10 \][/tex]
### Step 4: Form a Perfect Square
Rewrite the expression so that it includes a perfect square trinomial:
[tex]\[ (x - 4)^2 - 16 + 10 \][/tex]
### Step 5: Simplify the Expression
Combine the constant terms outside the perfect square:
[tex]\[ (x - 4)^2 - 6 \][/tex]
### Step 6: Rewrite in the Desired Form
The quadratic expression [tex]\(x^2 - 8x + 10\)[/tex] is now written in the form [tex]\((x + a)^2 + b\)[/tex]. Here, [tex]\(a = -4\)[/tex] and [tex]\(b = -6\)[/tex]. Therefore:
[tex]\[ x^2 - 8x + 10 = (x - 4)^2 - 6 \][/tex]
Therefore, the expression [tex]\( x^2 - 8x + 10 \)[/tex] can be rewritten as:
[tex]\[ \boxed{(x - 4)^2 - 6} \][/tex]
This is the correctly completed square form of the given quadratic expression.
### Step 1: Write the Quadratic Expression
Starting with the quadratic expression:
[tex]\[ x^2 - 8x + 10 \][/tex]
### Step 2: Identify the Coefficient of [tex]\(x\)[/tex]
Look at the coefficient of the linear term [tex]\(x\)[/tex], which is [tex]\(-8\)[/tex].
### Step 3: Complete the Square
To complete the square, take half of the coefficient of [tex]\(x\)[/tex] and square it. The coefficient of [tex]\(x\)[/tex] is [tex]\(-8\)[/tex], so:
[tex]\[ \left(\frac{-8}{2}\right)^2 = 16 \][/tex]
Now, add and subtract this square inside the expression:
[tex]\[ x^2 - 8x + 16 - 16 + 10 \][/tex]
### Step 4: Form a Perfect Square
Rewrite the expression so that it includes a perfect square trinomial:
[tex]\[ (x - 4)^2 - 16 + 10 \][/tex]
### Step 5: Simplify the Expression
Combine the constant terms outside the perfect square:
[tex]\[ (x - 4)^2 - 6 \][/tex]
### Step 6: Rewrite in the Desired Form
The quadratic expression [tex]\(x^2 - 8x + 10\)[/tex] is now written in the form [tex]\((x + a)^2 + b\)[/tex]. Here, [tex]\(a = -4\)[/tex] and [tex]\(b = -6\)[/tex]. Therefore:
[tex]\[ x^2 - 8x + 10 = (x - 4)^2 - 6 \][/tex]
Therefore, the expression [tex]\( x^2 - 8x + 10 \)[/tex] can be rewritten as:
[tex]\[ \boxed{(x - 4)^2 - 6} \][/tex]
This is the correctly completed square form of the given quadratic expression.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.