Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the condition under which the line [tex]\( px + qy + r = 0 \)[/tex] is normal to the circle [tex]\( x^2 + y^2 + 2gx + 2fy + c = 0 \)[/tex], we need to consider geometric properties of circles and lines.
First, let's summarize the necessary components:
### Circle Equation:
[tex]\[ x^2 + y^2 + 2gx + 2fy + c = 0 \][/tex]
The standard form of a circle equation [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex] can be derived by completing the square:
- The center of the circle [tex]\((h, k)\)[/tex] is given by [tex]\((-g, -f)\)[/tex].
- The radius [tex]\(r\)[/tex] can be found using the formula:
[tex]\[ r = \sqrt{g^2 + f^2 - c} \][/tex]
### Line Equation:
[tex]\[ px + qy + r = 0 \][/tex]
A line is normal to the circle if it passes through the circle's center because the radius at the point of tangency to a normal line is perpendicular to that line.
### Conditions:
For the line [tex]\( px + q y + r = 0 \)[/tex] to be normal to the circle, it must pass through the center of the circle.
Therefore, the coordinates of the center [tex]\((-g, -f)\)[/tex] should satisfy the line equation. Substituting [tex]\(-g\)[/tex] for [tex]\(x\)[/tex] and [tex]\(-f\)[/tex] for [tex]\(y\)[/tex] in the line equation gives us:
[tex]\[ p(-g) + q(-f) + r = 0 \][/tex]
Simplifying it, we get:
[tex]\[ -pg - qf + r = 0 \][/tex]
Which further simplifies to:
[tex]\[ pg + qf - r = 0 \][/tex]
In conclusion, the condition under which the line [tex]\( px + qy + r = 0 \)[/tex] can be normal to the circle [tex]\( x^2 + y^2 + 2gx + 2fy + c = 0 \)[/tex] is:
[tex]\[ p(-g) + q(-f) + r = 0 \][/tex]
First, let's summarize the necessary components:
### Circle Equation:
[tex]\[ x^2 + y^2 + 2gx + 2fy + c = 0 \][/tex]
The standard form of a circle equation [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex] can be derived by completing the square:
- The center of the circle [tex]\((h, k)\)[/tex] is given by [tex]\((-g, -f)\)[/tex].
- The radius [tex]\(r\)[/tex] can be found using the formula:
[tex]\[ r = \sqrt{g^2 + f^2 - c} \][/tex]
### Line Equation:
[tex]\[ px + qy + r = 0 \][/tex]
A line is normal to the circle if it passes through the circle's center because the radius at the point of tangency to a normal line is perpendicular to that line.
### Conditions:
For the line [tex]\( px + q y + r = 0 \)[/tex] to be normal to the circle, it must pass through the center of the circle.
Therefore, the coordinates of the center [tex]\((-g, -f)\)[/tex] should satisfy the line equation. Substituting [tex]\(-g\)[/tex] for [tex]\(x\)[/tex] and [tex]\(-f\)[/tex] for [tex]\(y\)[/tex] in the line equation gives us:
[tex]\[ p(-g) + q(-f) + r = 0 \][/tex]
Simplifying it, we get:
[tex]\[ -pg - qf + r = 0 \][/tex]
Which further simplifies to:
[tex]\[ pg + qf - r = 0 \][/tex]
In conclusion, the condition under which the line [tex]\( px + qy + r = 0 \)[/tex] can be normal to the circle [tex]\( x^2 + y^2 + 2gx + 2fy + c = 0 \)[/tex] is:
[tex]\[ p(-g) + q(-f) + r = 0 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.