Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which rotation was applied to the triangle [tex]\( XYZ \)[/tex] to obtain [tex]\( X'Y'Z' \)[/tex], we need to analyze the given vertices before and after the transformation.
1. Vertices of the original triangle [tex]\( XYZ \)[/tex]:
[tex]\[ X(1, 3), \quad Y(0, 0), \quad Z(-1, 2) \][/tex]
2. Vertices of the transformed triangle [tex]\( X'Y'Z' \)[/tex]:
[tex]\[ X'(-3, 1), \quad Y'(0, 0), \quad Z'(-2, -1) \][/tex]
Next, let's evaluate the potential rotations individually and see which one matches the given transformed vertices. We'll start by knowing typical rotation rules around the origin (counterclockwise):
### 1. Rotation by [tex]\( 90^\circ \)[/tex]
The transformation rule for a rotation of [tex]\( 90^\circ \)[/tex] counterclockwise around the origin is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
- For [tex]\( X(1, 3) \)[/tex]:
[tex]\[ (1, 3) \rightarrow (-3, 1) \][/tex]
This matches [tex]\( X'(-3, 1) \)[/tex].
- For [tex]\( Y(0, 0) \)[/tex]:
[tex]\[ (0, 0) \rightarrow (0, 0) \][/tex]
This matches [tex]\( Y'(0, 0) \)[/tex].
- For [tex]\( Z(-1, 2) \)[/tex]:
[tex]\[ (-1, 2) \rightarrow (-2, -1) \][/tex]
This matches [tex]\( Z'(-2, -1) \)[/tex].
Since all the vertices match, the rule that describes the transformation is:
[tex]\[ R_{0, 270^\circ} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{R_{0,270^{\circ}}} \][/tex]
1. Vertices of the original triangle [tex]\( XYZ \)[/tex]:
[tex]\[ X(1, 3), \quad Y(0, 0), \quad Z(-1, 2) \][/tex]
2. Vertices of the transformed triangle [tex]\( X'Y'Z' \)[/tex]:
[tex]\[ X'(-3, 1), \quad Y'(0, 0), \quad Z'(-2, -1) \][/tex]
Next, let's evaluate the potential rotations individually and see which one matches the given transformed vertices. We'll start by knowing typical rotation rules around the origin (counterclockwise):
### 1. Rotation by [tex]\( 90^\circ \)[/tex]
The transformation rule for a rotation of [tex]\( 90^\circ \)[/tex] counterclockwise around the origin is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]
- For [tex]\( X(1, 3) \)[/tex]:
[tex]\[ (1, 3) \rightarrow (-3, 1) \][/tex]
This matches [tex]\( X'(-3, 1) \)[/tex].
- For [tex]\( Y(0, 0) \)[/tex]:
[tex]\[ (0, 0) \rightarrow (0, 0) \][/tex]
This matches [tex]\( Y'(0, 0) \)[/tex].
- For [tex]\( Z(-1, 2) \)[/tex]:
[tex]\[ (-1, 2) \rightarrow (-2, -1) \][/tex]
This matches [tex]\( Z'(-2, -1) \)[/tex].
Since all the vertices match, the rule that describes the transformation is:
[tex]\[ R_{0, 270^\circ} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{R_{0,270^{\circ}}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.