Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the first term [tex]\(a\)[/tex] and the common difference [tex]\(d\)[/tex] of an arithmetic series given that the sum of the first 710 terms is 27.5 and the 10th term is 5, we follow a systematic approach:
### Step 1: Define the Formulas
1. The sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of an arithmetic series can be given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
2. The [tex]\(n\)[/tex]th term of an arithmetic series can be defined as:
[tex]\[ a_n = a + (n-1)d \][/tex]
### Step 2: Substitute the Known Values
Given:
- [tex]\(n = 710\)[/tex]
- [tex]\(S_{710} = 27.5\)[/tex]
- The 10th term [tex]\(a_{10} = 5\)[/tex]
### Step 3: Set Up the Equations
1. Using the given sum of the first 710 terms:
[tex]\[ 27.5 = \frac{710}{2} (2a + 709d) \][/tex]
Simplify this equation:
[tex]\[ 27.5 = 355 (2a + 709d) \][/tex]
[tex]\[ 2a + 709d = \frac{27.5}{355} \][/tex]
2. For the 10th term:
[tex]\[ a + 9d = 5 \][/tex]
### Step 4: Solve the System of Equations
We now have two equations:
1. [tex]\(2a + 709d = \frac{27.5}{355}\)[/tex]
2. [tex]\(a + 9d = 5\)[/tex]
We solve these equations simultaneously.
### Step 5: Find the Values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]
From the equations, solving for [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
1. From the second equation:
[tex]\[ a = 5 - 9d \][/tex]
2. Substitute [tex]\(a = 5 - 9d\)[/tex] into the first equation:
[tex]\[ 2(5 - 9d) + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 10 - 18d + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 691d + 10 = \frac{27.5}{355} \][/tex]
[tex]\[ 691d = \frac{27.5}{355} - 10 \][/tex]
[tex]\[ d = \frac{\frac{27.5}{355} - 10}{691} \][/tex]
Thus:
[tex]\[ d = -0.0143596746906912 \][/tex]
And substituting [tex]\(d\)[/tex] back into [tex]\(a = 5 - 9d\)[/tex]:
[tex]\[ a = 5 - 9 \times (-0.0143596746906912) \][/tex]
[tex]\[ a = 5.12923707221622 \][/tex]
### Conclusion
The first term [tex]\(a\)[/tex] is approximately [tex]\(5.12923707221622\)[/tex] and the common difference [tex]\(d\)[/tex] is approximately [tex]\(-0.0143596746906912\)[/tex].
### Step 1: Define the Formulas
1. The sum [tex]\(S_n\)[/tex] of the first [tex]\(n\)[/tex] terms of an arithmetic series can be given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
2. The [tex]\(n\)[/tex]th term of an arithmetic series can be defined as:
[tex]\[ a_n = a + (n-1)d \][/tex]
### Step 2: Substitute the Known Values
Given:
- [tex]\(n = 710\)[/tex]
- [tex]\(S_{710} = 27.5\)[/tex]
- The 10th term [tex]\(a_{10} = 5\)[/tex]
### Step 3: Set Up the Equations
1. Using the given sum of the first 710 terms:
[tex]\[ 27.5 = \frac{710}{2} (2a + 709d) \][/tex]
Simplify this equation:
[tex]\[ 27.5 = 355 (2a + 709d) \][/tex]
[tex]\[ 2a + 709d = \frac{27.5}{355} \][/tex]
2. For the 10th term:
[tex]\[ a + 9d = 5 \][/tex]
### Step 4: Solve the System of Equations
We now have two equations:
1. [tex]\(2a + 709d = \frac{27.5}{355}\)[/tex]
2. [tex]\(a + 9d = 5\)[/tex]
We solve these equations simultaneously.
### Step 5: Find the Values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]
From the equations, solving for [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
1. From the second equation:
[tex]\[ a = 5 - 9d \][/tex]
2. Substitute [tex]\(a = 5 - 9d\)[/tex] into the first equation:
[tex]\[ 2(5 - 9d) + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 10 - 18d + 709d = \frac{27.5}{355} \][/tex]
[tex]\[ 691d + 10 = \frac{27.5}{355} \][/tex]
[tex]\[ 691d = \frac{27.5}{355} - 10 \][/tex]
[tex]\[ d = \frac{\frac{27.5}{355} - 10}{691} \][/tex]
Thus:
[tex]\[ d = -0.0143596746906912 \][/tex]
And substituting [tex]\(d\)[/tex] back into [tex]\(a = 5 - 9d\)[/tex]:
[tex]\[ a = 5 - 9 \times (-0.0143596746906912) \][/tex]
[tex]\[ a = 5.12923707221622 \][/tex]
### Conclusion
The first term [tex]\(a\)[/tex] is approximately [tex]\(5.12923707221622\)[/tex] and the common difference [tex]\(d\)[/tex] is approximately [tex]\(-0.0143596746906912\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.