Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's work through this problem step-by-step. We need to find the first term ([tex]\(a\)[/tex]) and the common difference ([tex]\(d\)[/tex]) of an arithmetic series given the sum of the first 10 terms ([tex]\(S_{10} = 27.5\)[/tex]) and the 10th term ([tex]\(a_{10} = 5\)[/tex]).
### Step 1: Use the formula for the nth term of an arithmetic series
The general formula for the [tex]\(n\)[/tex]th term ([tex]\(a_n\)[/tex]) of an arithmetic series is:
[tex]\[ a_n = a + (n-1)d \][/tex]
For the 10th term:
[tex]\[ a_{10} = a + 9d \][/tex]
Given [tex]\(a_{10} = 5\)[/tex]:
[tex]\[ 5 = a + 9d \][/tex]
Rearrange to solve for [tex]\(a\)[/tex]:
[tex]\[ a = 5 - 9d \quad \text{(Equation 1)} \][/tex]
### Step 2: Use the formula for the sum of the first [tex]\(n\)[/tex] terms of an arithmetic series
The formula for the sum of the first [tex]\(n\)[/tex] terms ([tex]\(S_n\)[/tex]) is:
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
For the sum of the first 10 terms:
[tex]\[ S_{10} = \frac{10}{2} \left( 2a + 9d \right) \][/tex]
Given [tex]\(S_{10} = 27.5\)[/tex]:
[tex]\[ 27.5 = 5 \left( 2a + 9d \right) \][/tex]
Simplify:
[tex]\[ 5.5 = 2a + 9d \quad \text{(Equation 2)} \][/tex]
### Step 3: Substitute Equation 1 into Equation 2
Substitute [tex]\(a = 5 - 9d\)[/tex] from Equation 1 into Equation 2:
[tex]\[ 5.5 = 2(5 - 9d) + 9d \][/tex]
Expand and simplify:
[tex]\[ 5.5 = 10 - 18d + 9d \][/tex]
[tex]\[ 5.5 = 10 - 9d \][/tex]
Rearrange to solve for [tex]\(d\)[/tex]:
[tex]\[ -4.5 = -9d \][/tex]
[tex]\[ d = 0.5 \][/tex]
### Step 4: Substitute [tex]\(d\)[/tex] back into Equation 1 to find [tex]\(a\)[/tex]
Now, substitute [tex]\(d = 0.5\)[/tex] back into Equation 1:
[tex]\[ a = 5 - 9(0.5) \][/tex]
[tex]\[ a = 5 - 4.5 \][/tex]
[tex]\[ a = 0.5 \][/tex]
### Summary
The first term [tex]\(a\)[/tex] is [tex]\(0.5\)[/tex], and the common difference [tex]\(d\)[/tex] is [tex]\(0.5\)[/tex].
### Step 1: Use the formula for the nth term of an arithmetic series
The general formula for the [tex]\(n\)[/tex]th term ([tex]\(a_n\)[/tex]) of an arithmetic series is:
[tex]\[ a_n = a + (n-1)d \][/tex]
For the 10th term:
[tex]\[ a_{10} = a + 9d \][/tex]
Given [tex]\(a_{10} = 5\)[/tex]:
[tex]\[ 5 = a + 9d \][/tex]
Rearrange to solve for [tex]\(a\)[/tex]:
[tex]\[ a = 5 - 9d \quad \text{(Equation 1)} \][/tex]
### Step 2: Use the formula for the sum of the first [tex]\(n\)[/tex] terms of an arithmetic series
The formula for the sum of the first [tex]\(n\)[/tex] terms ([tex]\(S_n\)[/tex]) is:
[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]
For the sum of the first 10 terms:
[tex]\[ S_{10} = \frac{10}{2} \left( 2a + 9d \right) \][/tex]
Given [tex]\(S_{10} = 27.5\)[/tex]:
[tex]\[ 27.5 = 5 \left( 2a + 9d \right) \][/tex]
Simplify:
[tex]\[ 5.5 = 2a + 9d \quad \text{(Equation 2)} \][/tex]
### Step 3: Substitute Equation 1 into Equation 2
Substitute [tex]\(a = 5 - 9d\)[/tex] from Equation 1 into Equation 2:
[tex]\[ 5.5 = 2(5 - 9d) + 9d \][/tex]
Expand and simplify:
[tex]\[ 5.5 = 10 - 18d + 9d \][/tex]
[tex]\[ 5.5 = 10 - 9d \][/tex]
Rearrange to solve for [tex]\(d\)[/tex]:
[tex]\[ -4.5 = -9d \][/tex]
[tex]\[ d = 0.5 \][/tex]
### Step 4: Substitute [tex]\(d\)[/tex] back into Equation 1 to find [tex]\(a\)[/tex]
Now, substitute [tex]\(d = 0.5\)[/tex] back into Equation 1:
[tex]\[ a = 5 - 9(0.5) \][/tex]
[tex]\[ a = 5 - 4.5 \][/tex]
[tex]\[ a = 0.5 \][/tex]
### Summary
The first term [tex]\(a\)[/tex] is [tex]\(0.5\)[/tex], and the common difference [tex]\(d\)[/tex] is [tex]\(0.5\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.