Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's walk through the steps of the given equation:
Given equation:
[tex]\[ \frac{5}{2} h - \frac{15}{2} = \frac{1}{5} h \][/tex]
Step 1:
Move all terms involving [tex]\(h\)[/tex] to one side of the equation by subtracting [tex]\(\frac{1}{5}h\)[/tex] from both sides:
[tex]\[ \frac{5}{2} h - \frac{1}{5} h - \frac{15}{2} = 0 \][/tex]
Now, find a common denominator for the fractions involving [tex]\(h\)[/tex]. The least common multiple of 2 and 5 is 10:
[tex]\[ \left( \frac{5 \times 5}{2 \times 5} \right) h - \left( \frac{1 \times 2}{5 \times 2} \right) h - \frac{15}{2} = 0 \][/tex]
[tex]\[ \frac{25}{10} h - \frac{2}{10} h - \frac{15}{2} = 0 \][/tex]
Combine the [tex]\(h\)[/tex] terms:
[tex]\[ \frac{23}{10} h - \frac{15}{2} = 0 \][/tex]
This completes Step 1.
Step 2:
Isolate the variable term [tex]\(\frac{23}{10}h\)[/tex] by adding [tex]\(\frac{15}{2}\)[/tex] to both sides of the equation:
[tex]\[ \frac{23}{10}h = \frac{15}{2} \][/tex]
This addition step allows us to move the constant term to the other side of the equation.
Step 3:
Solve for [tex]\(h\)[/tex] by multiplying both sides by the reciprocal of [tex]\(\frac{23}{10}\)[/tex]:
[tex]\[ h = \frac{15}{2} \times \frac{10}{23} \][/tex]
Simplify the multiplication to find [tex]\(h\)[/tex]:
[tex]\[ h = \frac{75}{23} \][/tex]
The key step between Step 1 and Step 2 is the justification for isolating the variable term. By adding [tex]\(\frac{15}{2}\)[/tex] to both sides, we used the following principle:
The correct justification is:
[tex]\[ \text{the addition property of equality} \][/tex]
Thus, by following these steps, you can see that the answer to the question is:
[tex]\[ \boxed{\text{the addition property of equality}} \][/tex]
Given equation:
[tex]\[ \frac{5}{2} h - \frac{15}{2} = \frac{1}{5} h \][/tex]
Step 1:
Move all terms involving [tex]\(h\)[/tex] to one side of the equation by subtracting [tex]\(\frac{1}{5}h\)[/tex] from both sides:
[tex]\[ \frac{5}{2} h - \frac{1}{5} h - \frac{15}{2} = 0 \][/tex]
Now, find a common denominator for the fractions involving [tex]\(h\)[/tex]. The least common multiple of 2 and 5 is 10:
[tex]\[ \left( \frac{5 \times 5}{2 \times 5} \right) h - \left( \frac{1 \times 2}{5 \times 2} \right) h - \frac{15}{2} = 0 \][/tex]
[tex]\[ \frac{25}{10} h - \frac{2}{10} h - \frac{15}{2} = 0 \][/tex]
Combine the [tex]\(h\)[/tex] terms:
[tex]\[ \frac{23}{10} h - \frac{15}{2} = 0 \][/tex]
This completes Step 1.
Step 2:
Isolate the variable term [tex]\(\frac{23}{10}h\)[/tex] by adding [tex]\(\frac{15}{2}\)[/tex] to both sides of the equation:
[tex]\[ \frac{23}{10}h = \frac{15}{2} \][/tex]
This addition step allows us to move the constant term to the other side of the equation.
Step 3:
Solve for [tex]\(h\)[/tex] by multiplying both sides by the reciprocal of [tex]\(\frac{23}{10}\)[/tex]:
[tex]\[ h = \frac{15}{2} \times \frac{10}{23} \][/tex]
Simplify the multiplication to find [tex]\(h\)[/tex]:
[tex]\[ h = \frac{75}{23} \][/tex]
The key step between Step 1 and Step 2 is the justification for isolating the variable term. By adding [tex]\(\frac{15}{2}\)[/tex] to both sides, we used the following principle:
The correct justification is:
[tex]\[ \text{the addition property of equality} \][/tex]
Thus, by following these steps, you can see that the answer to the question is:
[tex]\[ \boxed{\text{the addition property of equality}} \][/tex]
Solution:
The justification for step 3 in the solution process is the multiplication property of equality. This property allows us to solve for ℎ by multiplying both sides of the equation by the reciprocal of 23/10
Answer: A. the multiplication property of equality
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.