Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To prove that the linear operator [tex]\( T \)[/tex] on an inner product space [tex]\( V \)[/tex] is one to one, given that [tex]\( \|T(x)\| = \|x\| \)[/tex] for all [tex]\( x \in V \)[/tex], we need to demonstrate that if [tex]\( T(x) = 0 \)[/tex], then [tex]\( x = 0 \)[/tex]. This property would ensure that [tex]\( T \)[/tex] is injective (one to one).
### Step-by-Step Solution
1. Given:
- [tex]\( T \)[/tex] is a linear operator on an inner product space [tex]\( V \)[/tex].
- [tex]\( \|T(x)\| = \|x\| \)[/tex] for all [tex]\( x \in V \)[/tex].
2. Objective:
- Prove that [tex]\( T \)[/tex] is one to one. That is, prove if [tex]\( T(x) = 0 \)[/tex], then [tex]\( x = 0 \)[/tex].
3. Proof:
- Assume [tex]\( T(x) = 0 \)[/tex] for some [tex]\( x \in V \)[/tex].
4. Apply the given condition:
- Since [tex]\( T \)[/tex] is an isometry, we have [tex]\( \|T(x)\| = \|x\| \)[/tex] for all [tex]\( x \in V \)[/tex].
5. Substitute [tex]\( T(x) = 0 \)[/tex] into the given condition:
- If [tex]\( T(x) = 0 \)[/tex], then [tex]\( \|T(x)\| = \|0\| \)[/tex].
6. Evaluate the norm of [tex]\( 0 \)[/tex]:
- [tex]\( \|0\| = 0 \)[/tex].
7. Thus:
- [tex]\( \|T(x)\| = 0 \)[/tex].
8. By the given condition:
- [tex]\( \|T(x)\| = \|x\| \)[/tex].
9. So:
- [tex]\( \|x\| = 0 \)[/tex].
10. Interpret the norm of [tex]\( x \)[/tex]:
- In an inner product space, the norm of a vector is zero if and only if the vector itself is zero.
11. Conclusion:
- Since [tex]\( \|x\| = 0 \)[/tex], it implies [tex]\( x = 0 \)[/tex].
12. Final result:
- We have shown that if [tex]\( T(x) = 0 \)[/tex], then [tex]\( x = 0 \)[/tex].
- Therefore, [tex]\( T \)[/tex] is one to one.
In conclusion, we have rigorously proven that the linear operator [tex]\( T \)[/tex] is one to one based on the initial condition that [tex]\( \|T(x)\| = \|x\| \)[/tex] for all [tex]\( x \in V \)[/tex].
### Step-by-Step Solution
1. Given:
- [tex]\( T \)[/tex] is a linear operator on an inner product space [tex]\( V \)[/tex].
- [tex]\( \|T(x)\| = \|x\| \)[/tex] for all [tex]\( x \in V \)[/tex].
2. Objective:
- Prove that [tex]\( T \)[/tex] is one to one. That is, prove if [tex]\( T(x) = 0 \)[/tex], then [tex]\( x = 0 \)[/tex].
3. Proof:
- Assume [tex]\( T(x) = 0 \)[/tex] for some [tex]\( x \in V \)[/tex].
4. Apply the given condition:
- Since [tex]\( T \)[/tex] is an isometry, we have [tex]\( \|T(x)\| = \|x\| \)[/tex] for all [tex]\( x \in V \)[/tex].
5. Substitute [tex]\( T(x) = 0 \)[/tex] into the given condition:
- If [tex]\( T(x) = 0 \)[/tex], then [tex]\( \|T(x)\| = \|0\| \)[/tex].
6. Evaluate the norm of [tex]\( 0 \)[/tex]:
- [tex]\( \|0\| = 0 \)[/tex].
7. Thus:
- [tex]\( \|T(x)\| = 0 \)[/tex].
8. By the given condition:
- [tex]\( \|T(x)\| = \|x\| \)[/tex].
9. So:
- [tex]\( \|x\| = 0 \)[/tex].
10. Interpret the norm of [tex]\( x \)[/tex]:
- In an inner product space, the norm of a vector is zero if and only if the vector itself is zero.
11. Conclusion:
- Since [tex]\( \|x\| = 0 \)[/tex], it implies [tex]\( x = 0 \)[/tex].
12. Final result:
- We have shown that if [tex]\( T(x) = 0 \)[/tex], then [tex]\( x = 0 \)[/tex].
- Therefore, [tex]\( T \)[/tex] is one to one.
In conclusion, we have rigorously proven that the linear operator [tex]\( T \)[/tex] is one to one based on the initial condition that [tex]\( \|T(x)\| = \|x\| \)[/tex] for all [tex]\( x \in V \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.