Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let’s solve the problem step-by-step to determine the identity of the parent atom that undergoes radioactive decay.
1. Understand the Decay Process:
- The given equation indicates the product of the decay: [tex]\(_{54}^{129} \text{Xe}\)[/tex] (Xenon-129) and [tex]\(_{-1}^{0} e\)[/tex] (an electron).
- This type of decay is known as beta decay. In beta decay, a neutron is converted into a proton, and an electron (beta particle) is emitted. This increases the atomic number by 1 while the mass number remains the same.
2. Determine the Characteristics of the Parent Atom:
- Since the atomic number (Z) of Xenon (Xe) is 54 after the decay, the atomic number of the parent atom must have been [tex]\(54 - 1 = 53\)[/tex] before the decay.
- The mass number (A) remains the same during beta decay. Therefore, the mass number of the parent atom must have been 129.
3. Identify the Parent Atom:
- We then look for an element with an atomic number of 53 and a mass number of 129. This corresponds to Iodine (I), which has an atomic number of 53.
4. Verify against the Choices:
- Choice A: [tex]\(_{55}^{133} \text{Cs}\)[/tex]
- This element has an atomic number of 55 and a mass number of 133. Clearly, it cannot be the parent atom since both the atomic number and mass number do not match our requirements.
- Choice B: [tex]\(_{53}^{127} \text{I}\)[/tex]
- This element has an atomic number of 53 (correct) but a mass number of 127 (incorrect). Thus, this cannot be the parent atom.
- Choice C: [tex]\(_{55}^{129} \text{Cs}\)[/tex]
- This element has an atomic number of 55 (incorrect) and a mass number of 129 (correct). Therefore, this cannot be the parent atom considering the atomic number.
- Choice D: [tex]\(_{53}^{129} \text{I}\)[/tex]
- This element has an atomic number of 53 (correct) and a mass number of 129 (correct). This matches our requirements perfectly, making it the correct choice.
Therefore, the identity of the parent atom is:
D. [tex]\(_{53}^{129} \text{I}\)[/tex]
1. Understand the Decay Process:
- The given equation indicates the product of the decay: [tex]\(_{54}^{129} \text{Xe}\)[/tex] (Xenon-129) and [tex]\(_{-1}^{0} e\)[/tex] (an electron).
- This type of decay is known as beta decay. In beta decay, a neutron is converted into a proton, and an electron (beta particle) is emitted. This increases the atomic number by 1 while the mass number remains the same.
2. Determine the Characteristics of the Parent Atom:
- Since the atomic number (Z) of Xenon (Xe) is 54 after the decay, the atomic number of the parent atom must have been [tex]\(54 - 1 = 53\)[/tex] before the decay.
- The mass number (A) remains the same during beta decay. Therefore, the mass number of the parent atom must have been 129.
3. Identify the Parent Atom:
- We then look for an element with an atomic number of 53 and a mass number of 129. This corresponds to Iodine (I), which has an atomic number of 53.
4. Verify against the Choices:
- Choice A: [tex]\(_{55}^{133} \text{Cs}\)[/tex]
- This element has an atomic number of 55 and a mass number of 133. Clearly, it cannot be the parent atom since both the atomic number and mass number do not match our requirements.
- Choice B: [tex]\(_{53}^{127} \text{I}\)[/tex]
- This element has an atomic number of 53 (correct) but a mass number of 127 (incorrect). Thus, this cannot be the parent atom.
- Choice C: [tex]\(_{55}^{129} \text{Cs}\)[/tex]
- This element has an atomic number of 55 (incorrect) and a mass number of 129 (correct). Therefore, this cannot be the parent atom considering the atomic number.
- Choice D: [tex]\(_{53}^{129} \text{I}\)[/tex]
- This element has an atomic number of 53 (correct) and a mass number of 129 (correct). This matches our requirements perfectly, making it the correct choice.
Therefore, the identity of the parent atom is:
D. [tex]\(_{53}^{129} \text{I}\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.