Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To convert the given equation of the circle from general form to standard form, follow these steps:
1. Start with the general form of the circle's equation:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
2. Group the x-terms and y-terms together:
[tex]\[ (x^2 + 8x) + (y^2 + 22y) + 37 = 0 \][/tex]
3. Complete the square for the x-terms and y-terms:
For [tex]\(x^2 + 8x\)[/tex]:
- Take the coefficient of x, which is 8, and divide it by 2, giving 4.
- Square this value: [tex]\(4^2 = 16\)[/tex].
- Rewrite [tex]\(x^2 + 8x\)[/tex] as [tex]\((x + 4)^2 - 16\)[/tex].
For [tex]\(y^2 + 22y\)[/tex]:
- Take the coefficient of y, which is 22, and divide it by 2, giving 11.
- Square this value: [tex]\(11^2 = 121\)[/tex].
- Rewrite [tex]\(y^2 + 22y\)[/tex] as [tex]\((y + 11)^2 - 121\)[/tex].
Thus, the equation now becomes:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine like terms:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
So, the standard form of the equation is:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
5. Identify the circle's center and radius squared:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-4, -11)\)[/tex].
- The radius squared [tex]\(r^2\)[/tex] is [tex]\(100\)[/tex].
Therefore, the complete answers are:
The equation of this circle in standard form is:
[tex]\[ (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
The center of the circle is at the point:
[tex]\[(\boxed{-4}, \boxed{-11})\][/tex]
1. Start with the general form of the circle's equation:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
2. Group the x-terms and y-terms together:
[tex]\[ (x^2 + 8x) + (y^2 + 22y) + 37 = 0 \][/tex]
3. Complete the square for the x-terms and y-terms:
For [tex]\(x^2 + 8x\)[/tex]:
- Take the coefficient of x, which is 8, and divide it by 2, giving 4.
- Square this value: [tex]\(4^2 = 16\)[/tex].
- Rewrite [tex]\(x^2 + 8x\)[/tex] as [tex]\((x + 4)^2 - 16\)[/tex].
For [tex]\(y^2 + 22y\)[/tex]:
- Take the coefficient of y, which is 22, and divide it by 2, giving 11.
- Square this value: [tex]\(11^2 = 121\)[/tex].
- Rewrite [tex]\(y^2 + 22y\)[/tex] as [tex]\((y + 11)^2 - 121\)[/tex].
Thus, the equation now becomes:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine like terms:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
So, the standard form of the equation is:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
5. Identify the circle's center and radius squared:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-4, -11)\)[/tex].
- The radius squared [tex]\(r^2\)[/tex] is [tex]\(100\)[/tex].
Therefore, the complete answers are:
The equation of this circle in standard form is:
[tex]\[ (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
The center of the circle is at the point:
[tex]\[(\boxed{-4}, \boxed{-11})\][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.