Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To convert the given equation of the circle from general form to standard form, follow these steps:
1. Start with the general form of the circle's equation:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
2. Group the x-terms and y-terms together:
[tex]\[ (x^2 + 8x) + (y^2 + 22y) + 37 = 0 \][/tex]
3. Complete the square for the x-terms and y-terms:
For [tex]\(x^2 + 8x\)[/tex]:
- Take the coefficient of x, which is 8, and divide it by 2, giving 4.
- Square this value: [tex]\(4^2 = 16\)[/tex].
- Rewrite [tex]\(x^2 + 8x\)[/tex] as [tex]\((x + 4)^2 - 16\)[/tex].
For [tex]\(y^2 + 22y\)[/tex]:
- Take the coefficient of y, which is 22, and divide it by 2, giving 11.
- Square this value: [tex]\(11^2 = 121\)[/tex].
- Rewrite [tex]\(y^2 + 22y\)[/tex] as [tex]\((y + 11)^2 - 121\)[/tex].
Thus, the equation now becomes:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine like terms:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
So, the standard form of the equation is:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
5. Identify the circle's center and radius squared:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-4, -11)\)[/tex].
- The radius squared [tex]\(r^2\)[/tex] is [tex]\(100\)[/tex].
Therefore, the complete answers are:
The equation of this circle in standard form is:
[tex]\[ (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
The center of the circle is at the point:
[tex]\[(\boxed{-4}, \boxed{-11})\][/tex]
1. Start with the general form of the circle's equation:
[tex]\[ x^2 + y^2 + 8x + 22y + 37 = 0 \][/tex]
2. Group the x-terms and y-terms together:
[tex]\[ (x^2 + 8x) + (y^2 + 22y) + 37 = 0 \][/tex]
3. Complete the square for the x-terms and y-terms:
For [tex]\(x^2 + 8x\)[/tex]:
- Take the coefficient of x, which is 8, and divide it by 2, giving 4.
- Square this value: [tex]\(4^2 = 16\)[/tex].
- Rewrite [tex]\(x^2 + 8x\)[/tex] as [tex]\((x + 4)^2 - 16\)[/tex].
For [tex]\(y^2 + 22y\)[/tex]:
- Take the coefficient of y, which is 22, and divide it by 2, giving 11.
- Square this value: [tex]\(11^2 = 121\)[/tex].
- Rewrite [tex]\(y^2 + 22y\)[/tex] as [tex]\((y + 11)^2 - 121\)[/tex].
Thus, the equation now becomes:
[tex]\[ (x + 4)^2 - 16 + (y + 11)^2 - 121 + 37 = 0 \][/tex]
4. Combine like terms:
[tex]\[ (x + 4)^2 + (y + 11)^2 - 100 = 0 \][/tex]
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
So, the standard form of the equation is:
[tex]\[ (x + 4)^2 + (y + 11)^2 = 100 \][/tex]
5. Identify the circle's center and radius squared:
- The center of the circle [tex]\((h, k)\)[/tex] is [tex]\((-4, -11)\)[/tex].
- The radius squared [tex]\(r^2\)[/tex] is [tex]\(100\)[/tex].
Therefore, the complete answers are:
The equation of this circle in standard form is:
[tex]\[ (x + \boxed{4})^2 + (y + \boxed{11})^2 = \boxed{100} \][/tex]
The center of the circle is at the point:
[tex]\[(\boxed{-4}, \boxed{-11})\][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.