Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the rate of compound interest per year that results in a compound interest of Rs. 42 on a principal amount of Rs. 200 over a period of 2 years, follow these steps:
1. Identify the given values:
- Principal amount ([tex]\(P\)[/tex]) = Rs. 200
- Compound Interest ([tex]\(CI\)[/tex]) = Rs. 42
- Time period ([tex]\(t\)[/tex]) = 2 years
2. Calculate the total amount [tex]\(A\)[/tex] after 2 years:
The total amount [tex]\(A\)[/tex] is the sum of the principal amount and the compound interest.
[tex]\[ A = P + CI = 200 + 42 = 242 \text{ Rs} \][/tex]
3. Use the compound interest formula to relate the principal amount and the total amount:
The general formula for compound interest is:
[tex]\[ A = P(1 + r/n)^{nt} \][/tex]
where:
- [tex]\(A\)[/tex] is the total amount after interest
- [tex]\(P\)[/tex] is the principal amount
- [tex]\(r\)[/tex] is the annual interest rate (as a decimal)
- [tex]\(n\)[/tex] is the number of times interest is compounded per year
- [tex]\(t\)[/tex] is the time period in years
In this problem, the interest is compounded once a year ([tex]\(n = 1\)[/tex]), so the formula simplifies to:
[tex]\[ A = P(1 + r)^t \][/tex]
4. Insert the known values into the simplified formula:
[tex]\[ 242 = 200(1 + r)^2 \][/tex]
5. Solve for the annual interest rate [tex]\(r\)[/tex]:
First, divide both sides by 200 to isolate the term involving [tex]\(r\)[/tex]:
[tex]\[ \frac{242}{200} = (1 + r)^2 \][/tex]
[tex]\[ 1.21 = (1 + r)^2 \][/tex]
Next, take the square root of both sides:
[tex]\[ \sqrt{1.21} = 1 + r \][/tex]
[tex]\[ 1.1 = 1 + r \][/tex]
Finally, solve for [tex]\(r\)[/tex]:
[tex]\[ r = 1.1 - 1 \][/tex]
[tex]\[ r = 0.1 \][/tex]
6. Convert the decimal interest rate to a percentage:
To express the interest rate [tex]\(r\)[/tex] as a percentage, multiply by 100:
[tex]\[ \text{Rate (\%)} = r \times 100 = 0.1 \times 100 = 10\% \][/tex]
Therefore, the annual rate of compound interest that results in a compound interest of Rs. 42 on a principal amount of Rs. 200 over 2 years is 10%.
1. Identify the given values:
- Principal amount ([tex]\(P\)[/tex]) = Rs. 200
- Compound Interest ([tex]\(CI\)[/tex]) = Rs. 42
- Time period ([tex]\(t\)[/tex]) = 2 years
2. Calculate the total amount [tex]\(A\)[/tex] after 2 years:
The total amount [tex]\(A\)[/tex] is the sum of the principal amount and the compound interest.
[tex]\[ A = P + CI = 200 + 42 = 242 \text{ Rs} \][/tex]
3. Use the compound interest formula to relate the principal amount and the total amount:
The general formula for compound interest is:
[tex]\[ A = P(1 + r/n)^{nt} \][/tex]
where:
- [tex]\(A\)[/tex] is the total amount after interest
- [tex]\(P\)[/tex] is the principal amount
- [tex]\(r\)[/tex] is the annual interest rate (as a decimal)
- [tex]\(n\)[/tex] is the number of times interest is compounded per year
- [tex]\(t\)[/tex] is the time period in years
In this problem, the interest is compounded once a year ([tex]\(n = 1\)[/tex]), so the formula simplifies to:
[tex]\[ A = P(1 + r)^t \][/tex]
4. Insert the known values into the simplified formula:
[tex]\[ 242 = 200(1 + r)^2 \][/tex]
5. Solve for the annual interest rate [tex]\(r\)[/tex]:
First, divide both sides by 200 to isolate the term involving [tex]\(r\)[/tex]:
[tex]\[ \frac{242}{200} = (1 + r)^2 \][/tex]
[tex]\[ 1.21 = (1 + r)^2 \][/tex]
Next, take the square root of both sides:
[tex]\[ \sqrt{1.21} = 1 + r \][/tex]
[tex]\[ 1.1 = 1 + r \][/tex]
Finally, solve for [tex]\(r\)[/tex]:
[tex]\[ r = 1.1 - 1 \][/tex]
[tex]\[ r = 0.1 \][/tex]
6. Convert the decimal interest rate to a percentage:
To express the interest rate [tex]\(r\)[/tex] as a percentage, multiply by 100:
[tex]\[ \text{Rate (\%)} = r \times 100 = 0.1 \times 100 = 10\% \][/tex]
Therefore, the annual rate of compound interest that results in a compound interest of Rs. 42 on a principal amount of Rs. 200 over 2 years is 10%.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.