At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's break down the problem step by step to find how the experimental probability of choosing a Queen compares to the theoretical probability of choosing a Queen.
First, we need to understand the theoretical probability. Since the set of face cards contains 4 Jacks, 4 Queens, and 4 Kings, the total number of cards is:
[tex]\[ 4 + 4 + 4 = 12 \][/tex]
The probability of choosing a Queen from this set is the number of Queens divided by the total number of cards:
[tex]\[ \text{Theoretical Probability of Queen} = \frac{\text{Number of Queens}}{\text{Total Number of Cards}} = \frac{4}{12} = \frac{1}{3} \approx 0.3333 \][/tex]
Next, let's look at the experimental probability. Carlie chooses a card 60 times, and the table shows that she observed 16 Queens. The experimental probability is the number of times a Queen is chosen divided by the total number of draws:
[tex]\[ \text{Experimental Probability of Queen} = \frac{\text{Observed Queens}}{\text{Total Draws}} = \frac{16}{60} = \frac{4}{15} \approx 0.2667 \][/tex]
Now, we need to compare the experimental probability with the theoretical probability. To do this, we subtract the experimental probability from the theoretical probability:
[tex]\[ \text{Difference} = \text{Theoretical Probability} - \text{Experimental Probability} \][/tex]
[tex]\[ \text{Difference} = 0.3333 - 0.2667 = 0.0666 \][/tex]
Thus, the experimental probability of choosing a Queen (0.2667) is less than the theoretical probability of choosing a Queen (0.3333) by approximately 0.0666.
To recap:
1. The theoretical probability of choosing a Queen is approximately 0.3333.
2. The experimental probability of choosing a Queen is approximately 0.2667.
3. The difference between the theoretical and experimental probabilities is approximately 0.0666.
First, we need to understand the theoretical probability. Since the set of face cards contains 4 Jacks, 4 Queens, and 4 Kings, the total number of cards is:
[tex]\[ 4 + 4 + 4 = 12 \][/tex]
The probability of choosing a Queen from this set is the number of Queens divided by the total number of cards:
[tex]\[ \text{Theoretical Probability of Queen} = \frac{\text{Number of Queens}}{\text{Total Number of Cards}} = \frac{4}{12} = \frac{1}{3} \approx 0.3333 \][/tex]
Next, let's look at the experimental probability. Carlie chooses a card 60 times, and the table shows that she observed 16 Queens. The experimental probability is the number of times a Queen is chosen divided by the total number of draws:
[tex]\[ \text{Experimental Probability of Queen} = \frac{\text{Observed Queens}}{\text{Total Draws}} = \frac{16}{60} = \frac{4}{15} \approx 0.2667 \][/tex]
Now, we need to compare the experimental probability with the theoretical probability. To do this, we subtract the experimental probability from the theoretical probability:
[tex]\[ \text{Difference} = \text{Theoretical Probability} - \text{Experimental Probability} \][/tex]
[tex]\[ \text{Difference} = 0.3333 - 0.2667 = 0.0666 \][/tex]
Thus, the experimental probability of choosing a Queen (0.2667) is less than the theoretical probability of choosing a Queen (0.3333) by approximately 0.0666.
To recap:
1. The theoretical probability of choosing a Queen is approximately 0.3333.
2. The experimental probability of choosing a Queen is approximately 0.2667.
3. The difference between the theoretical and experimental probabilities is approximately 0.0666.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.