Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

If one root of the equation [tex]$5x^2 + 13x + k = 0$[/tex] is the reciprocal of the other root, find the value of [tex]k[/tex].

Sagot :

To solve the problem where one root of the quadratic equation [tex]\(5x^2 + 13x + k = 0\)[/tex] is the reciprocal of the other root, we can proceed as follows:

First, let the roots of the quadratic equation be [tex]\(r_1\)[/tex] and [tex]\(r_2\)[/tex]. According to the given condition, one root is the reciprocal of the other root, i.e., [tex]\(r_1 = \frac{1}{r_2}\)[/tex].

For a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], we know two key properties about its roots [tex]\(r_1\)[/tex] and [tex]\(r_2\)[/tex]:
1. The sum of the roots: [tex]\( r_1 + r_2 = -\frac{b}{a} \)[/tex]
2. The product of the roots: [tex]\( r_1 \cdot r_2 = \frac{c}{a} \)[/tex]

Given our specific quadratic equation [tex]\(5x^2 + 13x + k = 0\)[/tex]:
- [tex]\(a = 5\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = k\)[/tex]

Using the product of the roots:
[tex]\[ r_1 \cdot r_2 = \frac{c}{a} = \frac{k}{5} \][/tex]

Since [tex]\( r_1 = \frac{1}{r_2} \)[/tex], we substitute this into [tex]\( r_1 \cdot r_2 \)[/tex]:
[tex]\[ \frac{1}{r_2} \cdot r_2 = 1 \][/tex]

Therefore, we have:
[tex]\[ \frac{k}{5} = 1 \][/tex]

Solving for [tex]\(k\)[/tex]:
[tex]\[ k = 5 \][/tex]

Thus, the value of [tex]\( k \)[/tex] is [tex]\(\boxed{5}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.