Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem where one root of the quadratic equation [tex]\(5x^2 + 13x + k = 0\)[/tex] is the reciprocal of the other root, we can proceed as follows:
First, let the roots of the quadratic equation be [tex]\(r_1\)[/tex] and [tex]\(r_2\)[/tex]. According to the given condition, one root is the reciprocal of the other root, i.e., [tex]\(r_1 = \frac{1}{r_2}\)[/tex].
For a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], we know two key properties about its roots [tex]\(r_1\)[/tex] and [tex]\(r_2\)[/tex]:
1. The sum of the roots: [tex]\( r_1 + r_2 = -\frac{b}{a} \)[/tex]
2. The product of the roots: [tex]\( r_1 \cdot r_2 = \frac{c}{a} \)[/tex]
Given our specific quadratic equation [tex]\(5x^2 + 13x + k = 0\)[/tex]:
- [tex]\(a = 5\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = k\)[/tex]
Using the product of the roots:
[tex]\[ r_1 \cdot r_2 = \frac{c}{a} = \frac{k}{5} \][/tex]
Since [tex]\( r_1 = \frac{1}{r_2} \)[/tex], we substitute this into [tex]\( r_1 \cdot r_2 \)[/tex]:
[tex]\[ \frac{1}{r_2} \cdot r_2 = 1 \][/tex]
Therefore, we have:
[tex]\[ \frac{k}{5} = 1 \][/tex]
Solving for [tex]\(k\)[/tex]:
[tex]\[ k = 5 \][/tex]
Thus, the value of [tex]\( k \)[/tex] is [tex]\(\boxed{5}\)[/tex].
First, let the roots of the quadratic equation be [tex]\(r_1\)[/tex] and [tex]\(r_2\)[/tex]. According to the given condition, one root is the reciprocal of the other root, i.e., [tex]\(r_1 = \frac{1}{r_2}\)[/tex].
For a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex], we know two key properties about its roots [tex]\(r_1\)[/tex] and [tex]\(r_2\)[/tex]:
1. The sum of the roots: [tex]\( r_1 + r_2 = -\frac{b}{a} \)[/tex]
2. The product of the roots: [tex]\( r_1 \cdot r_2 = \frac{c}{a} \)[/tex]
Given our specific quadratic equation [tex]\(5x^2 + 13x + k = 0\)[/tex]:
- [tex]\(a = 5\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = k\)[/tex]
Using the product of the roots:
[tex]\[ r_1 \cdot r_2 = \frac{c}{a} = \frac{k}{5} \][/tex]
Since [tex]\( r_1 = \frac{1}{r_2} \)[/tex], we substitute this into [tex]\( r_1 \cdot r_2 \)[/tex]:
[tex]\[ \frac{1}{r_2} \cdot r_2 = 1 \][/tex]
Therefore, we have:
[tex]\[ \frac{k}{5} = 1 \][/tex]
Solving for [tex]\(k\)[/tex]:
[tex]\[ k = 5 \][/tex]
Thus, the value of [tex]\( k \)[/tex] is [tex]\(\boxed{5}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.