Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To prove that [tex]\(\|\cdot\|\)[/tex] defined as [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] for [tex]\((a, b) \in V = \mathbb{R}^2\)[/tex] is a norm, we need to verify that it satisfies the three properties of a norm:
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.