Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To prove that [tex]\(\|\cdot\|\)[/tex] defined as [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] for [tex]\((a, b) \in V = \mathbb{R}^2\)[/tex] is a norm, we need to verify that it satisfies the three properties of a norm:
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
1. Non-Negativity and Definiteness:
- [tex]\(\| (a, b) \| \geq 0\)[/tex] for all [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
- [tex]\(\| (a, b) \| = 0 \)[/tex] if and only if [tex]\((a, b) = (0, 0)\)[/tex]
2. Positive Homogeneity:
- [tex]\(\| \alpha (a, b) \| = |\alpha| \| (a, b) \|\)[/tex] for all [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]
3. Triangle Inequality:
- [tex]\(\| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \|\)[/tex] for all [tex]\((a_1, b_1), (a_2, b_2) \in \mathbb{R}^2\)[/tex]
Let's go through each property step-by-step:
### 1. Non-Negativity and Definiteness
For any [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
- Since [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are both non-negative real numbers, [tex]\(\max\{|a|, |b|\}\)[/tex] is also non-negative. Therefore, [tex]\(\| (a, b) \| \geq 0\)[/tex].
- Suppose [tex]\(\| (a, b) \| = 0\)[/tex]. This means [tex]\(\max\{|a|, |b|\} = 0\)[/tex]. Since both [tex]\(|a|\)[/tex] and [tex]\(|b|\)[/tex] are non-negative, the maximum being zero implies that [tex]\(|a| = 0\)[/tex] and [tex]\(|b| = 0\)[/tex]. Thus, [tex]\(a = 0\)[/tex] and [tex]\(b = 0\)[/tex], so [tex]\((a, b) = (0, 0)\)[/tex].
Conversely, if [tex]\((a, b) = (0, 0)\)[/tex], then [tex]\(\| (0, 0) \| = \max\{|0|, |0|\} = 0\)[/tex].
Thus, the norm is non-negative and definite.
### 2. Positive Homogeneity
For any [tex]\(\alpha \in \mathbb{R}\)[/tex] and [tex]\((a, b) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| \alpha (a, b) \| = \| (\alpha a, \alpha b) \| = \max \{ |\alpha a|, |\alpha b| \} \][/tex]
Since [tex]\(|\alpha a| = |\alpha| |a|\)[/tex] and [tex]\(|\alpha b| = |\alpha| |b|\)[/tex], it follows that:
[tex]\[ \| (\alpha a, \alpha b) \| = \max \{ |\alpha| |a|, |\alpha| |b| \} = |\alpha| \max \{|a|, |b|\} = |\alpha| \| (a, b) \| \][/tex]
Hence, the norm satisfies positive homogeneity.
### 3. Triangle Inequality
For any [tex]\((a_1, b_1)\)[/tex] and [tex]\((a_2, b_2) \in \mathbb{R}^2\)[/tex]:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| = \max \{|a_1 + a_2|, |b_1 + b_2|\} \][/tex]
By the triangle inequality for absolute values, we know that:
[tex]\[ |a_1 + a_2| \leq |a_1| + |a_2| \quad \text{and} \quad |b_1 + b_2| \leq |b_1| + |b_2| \][/tex]
Taking the maximum of these two inequalities, we get:
[tex]\[ \max \{ |a_1 + a_2|, |b_1 + b_2| \} \leq \max \{ |a_1| + |a_2|, |b_1| + |b_2| \} \][/tex]
Note that [tex]\(\max \left\{ |a_1| + |a_2|, |b_1| + |b_2| \right\} \leq \max \{|a_1|, |b_1|\} + \max \{|a_2|, |b_2|\}\)[/tex] since:
- Either [tex]\(\max\{|a_1| + |a_2|, |b_1| + |b_2|\}\)[/tex] is achieved by [tex]\(|a_1| + |a_2|\)[/tex], in which case [tex]\(|a_1| + |a_2| \leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex],
- Or it is achieved by [tex]\(|b_1| + |b_2|\)[/tex], in which case [tex]\(|b_1| + |b_2|\leq \max\{|a_1|, |b_1|\} + \max\{|a_2|, |b_2|\}\)[/tex].
Therefore:
[tex]\[ \| (a_1 + a_2, b_1 + b_2) \| \leq \| (a_1, b_1) \| + \| (a_2, b_2) \| \][/tex]
Thus, the triangle inequality holds.
Having verified all three properties, we conclude that [tex]\(\|(a, b)\| = \max\{|a|, |b|\}\)[/tex] is indeed a norm on [tex]\( V = \mathbb{R}^2 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.