Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the angle of elevation from the tip of the shadow to the top of the tree, given a 12-foot tree that casts a 22-foot shadow, follow these steps:
1. Identify the given values:
- The height of the tree (opposite side): [tex]\( 12 \)[/tex] feet.
- The length of the shadow (adjacent side): [tex]\( 22 \)[/tex] feet.
2. Use the trigonometric function tangent, which relates the opposite side and the adjacent side of a right triangle:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Here, [tex]\(\theta\)[/tex] is the angle of elevation we need to find.
3. Set up the equation using the known values:
[tex]\[ \tan(\theta) = \frac{12}{22} \][/tex]
4. Calculate the arctangent (inverse tangent) of [tex]\( \frac{12}{22} \)[/tex] to find [tex]\( \theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{12}{22}\right) \][/tex]
5. Convert this angle in radians to degrees:
- Use a calculator to find the angle in radians:
[tex]\[ \theta \approx 0.499 \text{ radians} \][/tex]
- Convert radians to degrees:
[tex]\[ \theta \approx 28.610^{\circ} \][/tex]
6. Round the angle to the nearest tenth:
[tex]\[ 28.610^{\circ} \approx 28.6^{\circ} \][/tex]
Therefore, the angle of elevation from the tip of the shadow to the top of the tree is approximately [tex]\( 28.6^{\circ} \)[/tex].
Thus, the best answer from the choices provided is:
a. [tex]\( 28.6^{\circ} \)[/tex]
1. Identify the given values:
- The height of the tree (opposite side): [tex]\( 12 \)[/tex] feet.
- The length of the shadow (adjacent side): [tex]\( 22 \)[/tex] feet.
2. Use the trigonometric function tangent, which relates the opposite side and the adjacent side of a right triangle:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Here, [tex]\(\theta\)[/tex] is the angle of elevation we need to find.
3. Set up the equation using the known values:
[tex]\[ \tan(\theta) = \frac{12}{22} \][/tex]
4. Calculate the arctangent (inverse tangent) of [tex]\( \frac{12}{22} \)[/tex] to find [tex]\( \theta\)[/tex]:
[tex]\[ \theta = \arctan\left(\frac{12}{22}\right) \][/tex]
5. Convert this angle in radians to degrees:
- Use a calculator to find the angle in radians:
[tex]\[ \theta \approx 0.499 \text{ radians} \][/tex]
- Convert radians to degrees:
[tex]\[ \theta \approx 28.610^{\circ} \][/tex]
6. Round the angle to the nearest tenth:
[tex]\[ 28.610^{\circ} \approx 28.6^{\circ} \][/tex]
Therefore, the angle of elevation from the tip of the shadow to the top of the tree is approximately [tex]\( 28.6^{\circ} \)[/tex].
Thus, the best answer from the choices provided is:
a. [tex]\( 28.6^{\circ} \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.