At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of [tex]\( n \)[/tex] for which the vector [tex]\(\vec{i} + 2\vec{j} + n\vec{k}\)[/tex] is perpendicular to [tex]\( 4\vec{i} + 2\vec{j} + 2\vec{k} \)[/tex], we need to follow these steps:
1. Recall the condition for two vectors to be perpendicular: their dot product must be zero.
2. Compute the dot product of the given vectors.
3. Set the dot product equal to zero and solve for [tex]\( n \)[/tex].
Let's denote the vectors as:
[tex]\[ \vec{a} = \vec{i} + 2\vec{j} + n\vec{k} \][/tex]
[tex]\[ \vec{b} = 4\vec{i} + 2\vec{j} + 2\vec{k} \][/tex]
The dot product of [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is given by:
[tex]\[ \vec{a} \cdot \vec{b} = (1 \times 4) + (2 \times 2) + (n \times 2) \][/tex]
Now, let's compute it step-by-step:
[tex]\[ 1 \times 4 = 4 \][/tex]
[tex]\[ 2 \times 2 = 4 \][/tex]
[tex]\[ n \times 2 = 2n \][/tex]
Thus, the dot product is:
[tex]\[ \vec{a} \cdot \vec{b} = 4 + 4 + 2n = 8 + 2n \][/tex]
Since the vectors are perpendicular, their dot product must be zero:
[tex]\[ 8 + 2n = 0 \][/tex]
Solving for [tex]\( n \)[/tex]:
[tex]\[ 2n = -8 \][/tex]
[tex]\[ n = \frac{-8}{2} \][/tex]
[tex]\[ n = -4 \][/tex]
Therefore, the value of [tex]\( n \)[/tex] is:
[tex]\[ n = -4 \][/tex]
Thus, the correct answer is:
3) -4
1. Recall the condition for two vectors to be perpendicular: their dot product must be zero.
2. Compute the dot product of the given vectors.
3. Set the dot product equal to zero and solve for [tex]\( n \)[/tex].
Let's denote the vectors as:
[tex]\[ \vec{a} = \vec{i} + 2\vec{j} + n\vec{k} \][/tex]
[tex]\[ \vec{b} = 4\vec{i} + 2\vec{j} + 2\vec{k} \][/tex]
The dot product of [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is given by:
[tex]\[ \vec{a} \cdot \vec{b} = (1 \times 4) + (2 \times 2) + (n \times 2) \][/tex]
Now, let's compute it step-by-step:
[tex]\[ 1 \times 4 = 4 \][/tex]
[tex]\[ 2 \times 2 = 4 \][/tex]
[tex]\[ n \times 2 = 2n \][/tex]
Thus, the dot product is:
[tex]\[ \vec{a} \cdot \vec{b} = 4 + 4 + 2n = 8 + 2n \][/tex]
Since the vectors are perpendicular, their dot product must be zero:
[tex]\[ 8 + 2n = 0 \][/tex]
Solving for [tex]\( n \)[/tex]:
[tex]\[ 2n = -8 \][/tex]
[tex]\[ n = \frac{-8}{2} \][/tex]
[tex]\[ n = -4 \][/tex]
Therefore, the value of [tex]\( n \)[/tex] is:
[tex]\[ n = -4 \][/tex]
Thus, the correct answer is:
3) -4
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.