Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of [tex]\( n \)[/tex] for which the vector [tex]\(\vec{i} + 2\vec{j} + n\vec{k}\)[/tex] is perpendicular to [tex]\( 4\vec{i} + 2\vec{j} + 2\vec{k} \)[/tex], we need to follow these steps:
1. Recall the condition for two vectors to be perpendicular: their dot product must be zero.
2. Compute the dot product of the given vectors.
3. Set the dot product equal to zero and solve for [tex]\( n \)[/tex].
Let's denote the vectors as:
[tex]\[ \vec{a} = \vec{i} + 2\vec{j} + n\vec{k} \][/tex]
[tex]\[ \vec{b} = 4\vec{i} + 2\vec{j} + 2\vec{k} \][/tex]
The dot product of [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is given by:
[tex]\[ \vec{a} \cdot \vec{b} = (1 \times 4) + (2 \times 2) + (n \times 2) \][/tex]
Now, let's compute it step-by-step:
[tex]\[ 1 \times 4 = 4 \][/tex]
[tex]\[ 2 \times 2 = 4 \][/tex]
[tex]\[ n \times 2 = 2n \][/tex]
Thus, the dot product is:
[tex]\[ \vec{a} \cdot \vec{b} = 4 + 4 + 2n = 8 + 2n \][/tex]
Since the vectors are perpendicular, their dot product must be zero:
[tex]\[ 8 + 2n = 0 \][/tex]
Solving for [tex]\( n \)[/tex]:
[tex]\[ 2n = -8 \][/tex]
[tex]\[ n = \frac{-8}{2} \][/tex]
[tex]\[ n = -4 \][/tex]
Therefore, the value of [tex]\( n \)[/tex] is:
[tex]\[ n = -4 \][/tex]
Thus, the correct answer is:
3) -4
1. Recall the condition for two vectors to be perpendicular: their dot product must be zero.
2. Compute the dot product of the given vectors.
3. Set the dot product equal to zero and solve for [tex]\( n \)[/tex].
Let's denote the vectors as:
[tex]\[ \vec{a} = \vec{i} + 2\vec{j} + n\vec{k} \][/tex]
[tex]\[ \vec{b} = 4\vec{i} + 2\vec{j} + 2\vec{k} \][/tex]
The dot product of [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is given by:
[tex]\[ \vec{a} \cdot \vec{b} = (1 \times 4) + (2 \times 2) + (n \times 2) \][/tex]
Now, let's compute it step-by-step:
[tex]\[ 1 \times 4 = 4 \][/tex]
[tex]\[ 2 \times 2 = 4 \][/tex]
[tex]\[ n \times 2 = 2n \][/tex]
Thus, the dot product is:
[tex]\[ \vec{a} \cdot \vec{b} = 4 + 4 + 2n = 8 + 2n \][/tex]
Since the vectors are perpendicular, their dot product must be zero:
[tex]\[ 8 + 2n = 0 \][/tex]
Solving for [tex]\( n \)[/tex]:
[tex]\[ 2n = -8 \][/tex]
[tex]\[ n = \frac{-8}{2} \][/tex]
[tex]\[ n = -4 \][/tex]
Therefore, the value of [tex]\( n \)[/tex] is:
[tex]\[ n = -4 \][/tex]
Thus, the correct answer is:
3) -4
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.