Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find which expression is equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex] given that [tex]\(u(x) = x^5 - x^4 + x^2\)[/tex] and [tex]\(v(x) = -x^2\)[/tex], let's perform the following steps:
1. Identify the expressions for [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex]:
- [tex]\(u(x) = x^5 - x^4 + x^2\)[/tex]
- [tex]\(v(x) = -x^2\)[/tex]
2. Form the quotient [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex]:
[tex]\[ \left(\frac{u}{v}\right)(x) = \frac{x^5 - x^4 + x^2}{-x^2} \][/tex]
3. Divide each term in the numerator by the term in the denominator [tex]\(-x^2\)[/tex]:
[tex]\[ \left(\frac{u}{v}\right)(x) = \left(\frac{x^5}{-x^2}\right) + \left(\frac{-x^4}{-x^2}\right) + \left(\frac{x^2}{-x^2}\right) \][/tex]
4. Simplify each term individually:
[tex]\[ \frac{x^5}{-x^2} = -x^{5-2} = -x^3 \][/tex]
[tex]\[ \frac{-x^4}{-x^2} = x^{4-2} = x^2 \][/tex]
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]
5. Combine these simplified terms:
[tex]\[ -x^3 + x^2 - 1 \][/tex]
So, the expression equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex] is [tex]\( -x^3 + x^2 - 1 \)[/tex].
Therefore, the correct option is:
[tex]\[ -x^3 + x^2 - 1 \][/tex]
1. Identify the expressions for [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex]:
- [tex]\(u(x) = x^5 - x^4 + x^2\)[/tex]
- [tex]\(v(x) = -x^2\)[/tex]
2. Form the quotient [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex]:
[tex]\[ \left(\frac{u}{v}\right)(x) = \frac{x^5 - x^4 + x^2}{-x^2} \][/tex]
3. Divide each term in the numerator by the term in the denominator [tex]\(-x^2\)[/tex]:
[tex]\[ \left(\frac{u}{v}\right)(x) = \left(\frac{x^5}{-x^2}\right) + \left(\frac{-x^4}{-x^2}\right) + \left(\frac{x^2}{-x^2}\right) \][/tex]
4. Simplify each term individually:
[tex]\[ \frac{x^5}{-x^2} = -x^{5-2} = -x^3 \][/tex]
[tex]\[ \frac{-x^4}{-x^2} = x^{4-2} = x^2 \][/tex]
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]
5. Combine these simplified terms:
[tex]\[ -x^3 + x^2 - 1 \][/tex]
So, the expression equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex] is [tex]\( -x^3 + x^2 - 1 \)[/tex].
Therefore, the correct option is:
[tex]\[ -x^3 + x^2 - 1 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.