Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve for the set [tex]\(\{(x, y) \in \mathbb{R}^2 \mid 4y - 7 = 0\}\)[/tex], we need to find the values of [tex]\(y\)[/tex] that satisfy the given equation and determine the corresponding [tex]\(x\)[/tex] values, where [tex]\(x\)[/tex] can be any real number.
1. Given Equation:
[tex]\[ 4y - 7 = 0 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
[tex]\[ 4y - 7 = 0 \][/tex]
To isolate [tex]\(y\)[/tex], add 7 to both sides of the equation:
[tex]\[ 4y = 7 \][/tex]
Now, divide both sides by 4:
[tex]\[ y = \frac{7}{4} \][/tex]
3. Interpret the solution:
The equation [tex]\(4y - 7 = 0\)[/tex] defines a horizontal line in the [tex]\(xy\)[/tex]-plane where [tex]\(y\)[/tex] is always [tex]\(\frac{7}{4}\)[/tex]. This means for any real number [tex]\(x\)[/tex], [tex]\(y\)[/tex] will always be [tex]\(\frac{7}{4}\)[/tex].
4. Form the solution set:
The solution can be expressed as:
[tex]\[ \{(x, y) \in \mathbb{R}^2 \mid y = \frac{7}{4}\} \][/tex]
Since [tex]\(x\)[/tex] can be any real number, the solution set includes all pairs [tex]\((x, 1.75)\)[/tex], where [tex]\(1.75\)[/tex] is the decimal representation of [tex]\(\frac{7}{4}\)[/tex].
Therefore, the solution set is:
[tex]\[ (x, 1.75) \quad \text{for any } x \in \mathbb{R} \][/tex]
1. Given Equation:
[tex]\[ 4y - 7 = 0 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
[tex]\[ 4y - 7 = 0 \][/tex]
To isolate [tex]\(y\)[/tex], add 7 to both sides of the equation:
[tex]\[ 4y = 7 \][/tex]
Now, divide both sides by 4:
[tex]\[ y = \frac{7}{4} \][/tex]
3. Interpret the solution:
The equation [tex]\(4y - 7 = 0\)[/tex] defines a horizontal line in the [tex]\(xy\)[/tex]-plane where [tex]\(y\)[/tex] is always [tex]\(\frac{7}{4}\)[/tex]. This means for any real number [tex]\(x\)[/tex], [tex]\(y\)[/tex] will always be [tex]\(\frac{7}{4}\)[/tex].
4. Form the solution set:
The solution can be expressed as:
[tex]\[ \{(x, y) \in \mathbb{R}^2 \mid y = \frac{7}{4}\} \][/tex]
Since [tex]\(x\)[/tex] can be any real number, the solution set includes all pairs [tex]\((x, 1.75)\)[/tex], where [tex]\(1.75\)[/tex] is the decimal representation of [tex]\(\frac{7}{4}\)[/tex].
Therefore, the solution set is:
[tex]\[ (x, 1.75) \quad \text{for any } x \in \mathbb{R} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.