Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve for the set [tex]\(\{(x, y) \in \mathbb{R}^2 \mid 4y - 7 = 0\}\)[/tex], we need to find the values of [tex]\(y\)[/tex] that satisfy the given equation and determine the corresponding [tex]\(x\)[/tex] values, where [tex]\(x\)[/tex] can be any real number.
1. Given Equation:
[tex]\[ 4y - 7 = 0 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
[tex]\[ 4y - 7 = 0 \][/tex]
To isolate [tex]\(y\)[/tex], add 7 to both sides of the equation:
[tex]\[ 4y = 7 \][/tex]
Now, divide both sides by 4:
[tex]\[ y = \frac{7}{4} \][/tex]
3. Interpret the solution:
The equation [tex]\(4y - 7 = 0\)[/tex] defines a horizontal line in the [tex]\(xy\)[/tex]-plane where [tex]\(y\)[/tex] is always [tex]\(\frac{7}{4}\)[/tex]. This means for any real number [tex]\(x\)[/tex], [tex]\(y\)[/tex] will always be [tex]\(\frac{7}{4}\)[/tex].
4. Form the solution set:
The solution can be expressed as:
[tex]\[ \{(x, y) \in \mathbb{R}^2 \mid y = \frac{7}{4}\} \][/tex]
Since [tex]\(x\)[/tex] can be any real number, the solution set includes all pairs [tex]\((x, 1.75)\)[/tex], where [tex]\(1.75\)[/tex] is the decimal representation of [tex]\(\frac{7}{4}\)[/tex].
Therefore, the solution set is:
[tex]\[ (x, 1.75) \quad \text{for any } x \in \mathbb{R} \][/tex]
1. Given Equation:
[tex]\[ 4y - 7 = 0 \][/tex]
2. Solve for [tex]\(y\)[/tex]:
[tex]\[ 4y - 7 = 0 \][/tex]
To isolate [tex]\(y\)[/tex], add 7 to both sides of the equation:
[tex]\[ 4y = 7 \][/tex]
Now, divide both sides by 4:
[tex]\[ y = \frac{7}{4} \][/tex]
3. Interpret the solution:
The equation [tex]\(4y - 7 = 0\)[/tex] defines a horizontal line in the [tex]\(xy\)[/tex]-plane where [tex]\(y\)[/tex] is always [tex]\(\frac{7}{4}\)[/tex]. This means for any real number [tex]\(x\)[/tex], [tex]\(y\)[/tex] will always be [tex]\(\frac{7}{4}\)[/tex].
4. Form the solution set:
The solution can be expressed as:
[tex]\[ \{(x, y) \in \mathbb{R}^2 \mid y = \frac{7}{4}\} \][/tex]
Since [tex]\(x\)[/tex] can be any real number, the solution set includes all pairs [tex]\((x, 1.75)\)[/tex], where [tex]\(1.75\)[/tex] is the decimal representation of [tex]\(\frac{7}{4}\)[/tex].
Therefore, the solution set is:
[tex]\[ (x, 1.75) \quad \text{for any } x \in \mathbb{R} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.