Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the angle between vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] given the relation [tex]\(\vec{A} \cdot \vec{B} = |\vec{A} \times \vec{B}|\)[/tex], we can use the properties of the dot product and cross product. Let's break it down step-by-step:
1. Dot Product:
The dot product of two vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is given by:
[tex]\[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \][/tex]
where [tex]\(\theta\)[/tex] is the angle between the vectors, and [tex]\(|\vec{A}|\)[/tex] and [tex]\(|\vec{B}|\)[/tex] are the magnitudes of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] respectively.
2. Cross Product:
The magnitude of the cross product of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is given by:
[tex]\[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \][/tex]
3. Given Condition:
According to the problem, we have:
[tex]\[ \vec{A} \cdot \vec{B} = |\vec{A} \times \vec{B}| \][/tex]
4. Substitute the Dot Product and Cross Product Formulas:
Substitute the expressions for the dot product and magnitude of the cross product:
[tex]\[ |\vec{A}| |\vec{B}| \cos \theta = |\vec{A}| |\vec{B}| \sin \theta \][/tex]
5. Simplify the Equation:
If both [tex]\(|\vec{A}|\)[/tex] and [tex]\(|\vec{B}|\)[/tex] are non-zero, we can divide both sides of the equation by [tex]\(|\vec{A}| |\vec{B}|\)[/tex]:
[tex]\[ \cos \theta = \sin \theta \][/tex]
6. Solve for [tex]\(\theta\)[/tex]:
Recall the trigonometric identity that [tex]\(\cos \theta = \sin \theta\)[/tex] when [tex]\(\theta\)[/tex] is 45 degrees. Therefore:
[tex]\[ \tan \theta = 1 \][/tex]
The angle whose tangent is 1 is:
[tex]\[ \theta = 45^\circ \][/tex]
Therefore, the angle between the vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is [tex]\(45^\circ\)[/tex].
So, the correct answer is:
2) [tex]\(45^\circ\)[/tex]
1. Dot Product:
The dot product of two vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is given by:
[tex]\[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \][/tex]
where [tex]\(\theta\)[/tex] is the angle between the vectors, and [tex]\(|\vec{A}|\)[/tex] and [tex]\(|\vec{B}|\)[/tex] are the magnitudes of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] respectively.
2. Cross Product:
The magnitude of the cross product of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is given by:
[tex]\[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \][/tex]
3. Given Condition:
According to the problem, we have:
[tex]\[ \vec{A} \cdot \vec{B} = |\vec{A} \times \vec{B}| \][/tex]
4. Substitute the Dot Product and Cross Product Formulas:
Substitute the expressions for the dot product and magnitude of the cross product:
[tex]\[ |\vec{A}| |\vec{B}| \cos \theta = |\vec{A}| |\vec{B}| \sin \theta \][/tex]
5. Simplify the Equation:
If both [tex]\(|\vec{A}|\)[/tex] and [tex]\(|\vec{B}|\)[/tex] are non-zero, we can divide both sides of the equation by [tex]\(|\vec{A}| |\vec{B}|\)[/tex]:
[tex]\[ \cos \theta = \sin \theta \][/tex]
6. Solve for [tex]\(\theta\)[/tex]:
Recall the trigonometric identity that [tex]\(\cos \theta = \sin \theta\)[/tex] when [tex]\(\theta\)[/tex] is 45 degrees. Therefore:
[tex]\[ \tan \theta = 1 \][/tex]
The angle whose tangent is 1 is:
[tex]\[ \theta = 45^\circ \][/tex]
Therefore, the angle between the vectors [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex] is [tex]\(45^\circ\)[/tex].
So, the correct answer is:
2) [tex]\(45^\circ\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.