Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we need to determine two key distances:
(a) The distance from [tex]\(X\)[/tex] to [tex]\(Z\)[/tex] (which we will call [tex]\(XZ\)[/tex]).
(b) The distance from [tex]\(Y\)[/tex] to [tex]\(Z\)[/tex] (which we will call [tex]\(YZ\)[/tex]).
Let's start solving step-by-step:
### Step 1: Understanding Bearings and Coordinates
1. Bearing from [tex]\(X\)[/tex] to [tex]\(Y\)[/tex]:
- Bearing [tex]\(N 45^\circ E\)[/tex] means the direction is [tex]\(45^\circ\)[/tex] from the north towards the east.
- This implies [tex]\(XY\)[/tex] forms an angle of [tex]\(45^\circ\)[/tex] with the positive x-axis (east direction).
2. Bearing from [tex]\(Y\)[/tex] to [tex]\(Z\)[/tex]:
- Bearing [tex]\(S 60^\circ E\)[/tex] means the direction is [tex]\(60^\circ\)[/tex] from the south towards the east.
- If we convert this bearing for trigonometric purposes, it can be seen as [tex]\(30^\circ\)[/tex] above the negative y-axis (south direction).
### Step 2: Convert Bearings to Cartesian Coordinates
Let’s define our coordinates:
- Let [tex]\(X\)[/tex] be the origin point: [tex]\( (0, 0) \)[/tex]
- Let [tex]\(Y\)[/tex] be point [tex]\(Y(x, y)\)[/tex]
Using the [tex]\(45^\circ\)[/tex] for [tex]\(XY:\)[/tex]
- [tex]\(Y_x = 200 \cos(45^\circ) = 200 \cdot \frac{\sqrt{2}}{2} = 100\sqrt{2}\)[/tex]
- [tex]\(Y_y = 200 \sin(45^\circ) = 200 \cdot \frac{\sqrt{2}}{2} = 100\sqrt{2}\)[/tex]
So, coordinates of [tex]\(Y\)[/tex] are approximately [tex]\( (141.42, 141.42) \)[/tex].
### Step 3: Calculating [tex]\(XZ\)[/tex]
Since [tex]\(Z\)[/tex] is directly east of [tex]\(X\)[/tex], it lies on the x-axis:
- We know that [tex]\(Z\)[/tex]’s x-coordinate must be determined by considering the horizontal distance traversed.
To determine this, consider the bearings and form an understanding:
- Distance from [tex]\(Y\)[/tex] to the east component due to [tex]\(S 60^\circ E\)[/tex] will be along the x-axis from [tex]\(Y\)[/tex].
Utilizing trigonometric relationships:
- [tex]\(Y_y / \tan(60^\circ)\)[/tex] determines the x-direction displacement from [tex]\(Y\)[/tex]
- So, [tex]\(Z_x from Y = 100\sqrt{2} / \sqrt{3} = \frac{100\sqrt{2}}{\sqrt{3}} \approx 81.65\)[/tex]
Therefore:
[tex]\[ Z_x = Y_x + Z_x from Y = 100\sqrt{2} + \frac{100\sqrt{2}}{\sqrt{3}} = 223.07 \][/tex]
Hence, [tex]\(XZ\)[/tex] distance is approximately [tex]\( 223.071 \)[/tex] km.
### Step 4: Calculating [tex]\(YZ\)[/tex]
Using sine for [tex]\(S 60^\circ E\)[/tex]:
- [tex]\(YZ\)[/tex] is calculated by understanding [tex]\( Y_y\ / \sin(60^\circ)\)[/tex]
[tex]\[ Y_y / \sin(60^\circ) = \( 100\sqrt{2} / (\sqrt(3)/2) = 163.299 \][/tex]
Therefore:
[tex]\[ YZ = 163.299 \ km \][/tex]
### Final Results
(a) The distance from [tex]\(X\)[/tex] to [tex]\(Z\)[/tex] is approximately [tex]\(223.071\)[/tex] km.
(b) The distance from [tex]\(Y\)[/tex] to [tex]\(Z\)[/tex] is approximately [tex]\(163.299\)[/tex] km.
(a) The distance from [tex]\(X\)[/tex] to [tex]\(Z\)[/tex] (which we will call [tex]\(XZ\)[/tex]).
(b) The distance from [tex]\(Y\)[/tex] to [tex]\(Z\)[/tex] (which we will call [tex]\(YZ\)[/tex]).
Let's start solving step-by-step:
### Step 1: Understanding Bearings and Coordinates
1. Bearing from [tex]\(X\)[/tex] to [tex]\(Y\)[/tex]:
- Bearing [tex]\(N 45^\circ E\)[/tex] means the direction is [tex]\(45^\circ\)[/tex] from the north towards the east.
- This implies [tex]\(XY\)[/tex] forms an angle of [tex]\(45^\circ\)[/tex] with the positive x-axis (east direction).
2. Bearing from [tex]\(Y\)[/tex] to [tex]\(Z\)[/tex]:
- Bearing [tex]\(S 60^\circ E\)[/tex] means the direction is [tex]\(60^\circ\)[/tex] from the south towards the east.
- If we convert this bearing for trigonometric purposes, it can be seen as [tex]\(30^\circ\)[/tex] above the negative y-axis (south direction).
### Step 2: Convert Bearings to Cartesian Coordinates
Let’s define our coordinates:
- Let [tex]\(X\)[/tex] be the origin point: [tex]\( (0, 0) \)[/tex]
- Let [tex]\(Y\)[/tex] be point [tex]\(Y(x, y)\)[/tex]
Using the [tex]\(45^\circ\)[/tex] for [tex]\(XY:\)[/tex]
- [tex]\(Y_x = 200 \cos(45^\circ) = 200 \cdot \frac{\sqrt{2}}{2} = 100\sqrt{2}\)[/tex]
- [tex]\(Y_y = 200 \sin(45^\circ) = 200 \cdot \frac{\sqrt{2}}{2} = 100\sqrt{2}\)[/tex]
So, coordinates of [tex]\(Y\)[/tex] are approximately [tex]\( (141.42, 141.42) \)[/tex].
### Step 3: Calculating [tex]\(XZ\)[/tex]
Since [tex]\(Z\)[/tex] is directly east of [tex]\(X\)[/tex], it lies on the x-axis:
- We know that [tex]\(Z\)[/tex]’s x-coordinate must be determined by considering the horizontal distance traversed.
To determine this, consider the bearings and form an understanding:
- Distance from [tex]\(Y\)[/tex] to the east component due to [tex]\(S 60^\circ E\)[/tex] will be along the x-axis from [tex]\(Y\)[/tex].
Utilizing trigonometric relationships:
- [tex]\(Y_y / \tan(60^\circ)\)[/tex] determines the x-direction displacement from [tex]\(Y\)[/tex]
- So, [tex]\(Z_x from Y = 100\sqrt{2} / \sqrt{3} = \frac{100\sqrt{2}}{\sqrt{3}} \approx 81.65\)[/tex]
Therefore:
[tex]\[ Z_x = Y_x + Z_x from Y = 100\sqrt{2} + \frac{100\sqrt{2}}{\sqrt{3}} = 223.07 \][/tex]
Hence, [tex]\(XZ\)[/tex] distance is approximately [tex]\( 223.071 \)[/tex] km.
### Step 4: Calculating [tex]\(YZ\)[/tex]
Using sine for [tex]\(S 60^\circ E\)[/tex]:
- [tex]\(YZ\)[/tex] is calculated by understanding [tex]\( Y_y\ / \sin(60^\circ)\)[/tex]
[tex]\[ Y_y / \sin(60^\circ) = \( 100\sqrt{2} / (\sqrt(3)/2) = 163.299 \][/tex]
Therefore:
[tex]\[ YZ = 163.299 \ km \][/tex]
### Final Results
(a) The distance from [tex]\(X\)[/tex] to [tex]\(Z\)[/tex] is approximately [tex]\(223.071\)[/tex] km.
(b) The distance from [tex]\(Y\)[/tex] to [tex]\(Z\)[/tex] is approximately [tex]\(163.299\)[/tex] km.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.