Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the problem step by step.
We have a compound inequality:
[tex]\[ 10 < x < 20 \][/tex]
This means we are looking for numbers that satisfy:
- Greater than 10
- Less than 20
Let's check each set of numbers to see which numbers satisfy the compound inequality [tex]\( 10 < x < 20 \)[/tex].
1. For the set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]:
- [tex]\(-7\)[/tex] is not greater than 10.
- [tex]\(5\)[/tex] is not greater than 10.
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(24\)[/tex] is not less than 20.
- [tex]\(32\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(18\)[/tex]. Therefore, [tex]\(\{18\}\)[/tex].
The count of numbers satisfying the inequality: 1.
2. For the set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]:
- [tex]\(-9\)[/tex] is not greater than 10.
- [tex]\(7\)[/tex] is not greater than 10.
- [tex]\(15\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(26\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(15\)[/tex]. Therefore, [tex]\(\{15\}\)[/tex].
The count of numbers satisfying the inequality: 1.
3. For the set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]:
- [tex]\(16\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(17\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(23\)[/tex] is not less than 20.
- [tex]\(24\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(16\)[/tex] and [tex]\(17\)[/tex]. Therefore, [tex]\(\{16, 17\}\)[/tex].
The count of numbers satisfying the inequality: 2.
4. For the set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]:
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(19\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(20\)[/tex] is not less than 20.
- [tex]\(21\)[/tex] is not less than 20.
- [tex]\(22\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(18\)[/tex] and [tex]\(19\)[/tex]. Therefore, [tex]\(\{18, 19\}\)[/tex].
The count of numbers satisfying the inequality: 2.
Summarizing the results:
- For set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]: 1 number (18)
- For set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]: 1 number (15)
- For set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]: 2 numbers (16, 17)
- For set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]: 2 numbers (18, 19)
Sets with the maximum numbers satisfying the inequality are:
[tex]\(\{16, 17, 22, 23, 24\}\)[/tex] and [tex]\(\{18, 19, 20, 21, 22\}\)[/tex] each with 2 numbers within the range [tex]\( 10 < x < 20 \)[/tex].
We have a compound inequality:
[tex]\[ 10 < x < 20 \][/tex]
This means we are looking for numbers that satisfy:
- Greater than 10
- Less than 20
Let's check each set of numbers to see which numbers satisfy the compound inequality [tex]\( 10 < x < 20 \)[/tex].
1. For the set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]:
- [tex]\(-7\)[/tex] is not greater than 10.
- [tex]\(5\)[/tex] is not greater than 10.
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(24\)[/tex] is not less than 20.
- [tex]\(32\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(18\)[/tex]. Therefore, [tex]\(\{18\}\)[/tex].
The count of numbers satisfying the inequality: 1.
2. For the set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]:
- [tex]\(-9\)[/tex] is not greater than 10.
- [tex]\(7\)[/tex] is not greater than 10.
- [tex]\(15\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(26\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(15\)[/tex]. Therefore, [tex]\(\{15\}\)[/tex].
The count of numbers satisfying the inequality: 1.
3. For the set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]:
- [tex]\(16\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(17\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(23\)[/tex] is not less than 20.
- [tex]\(24\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(16\)[/tex] and [tex]\(17\)[/tex]. Therefore, [tex]\(\{16, 17\}\)[/tex].
The count of numbers satisfying the inequality: 2.
4. For the set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]:
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(19\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(20\)[/tex] is not less than 20.
- [tex]\(21\)[/tex] is not less than 20.
- [tex]\(22\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(18\)[/tex] and [tex]\(19\)[/tex]. Therefore, [tex]\(\{18, 19\}\)[/tex].
The count of numbers satisfying the inequality: 2.
Summarizing the results:
- For set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]: 1 number (18)
- For set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]: 1 number (15)
- For set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]: 2 numbers (16, 17)
- For set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]: 2 numbers (18, 19)
Sets with the maximum numbers satisfying the inequality are:
[tex]\(\{16, 17, 22, 23, 24\}\)[/tex] and [tex]\(\{18, 19, 20, 21, 22\}\)[/tex] each with 2 numbers within the range [tex]\( 10 < x < 20 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.