Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the problem step by step.
We have a compound inequality:
[tex]\[ 10 < x < 20 \][/tex]
This means we are looking for numbers that satisfy:
- Greater than 10
- Less than 20
Let's check each set of numbers to see which numbers satisfy the compound inequality [tex]\( 10 < x < 20 \)[/tex].
1. For the set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]:
- [tex]\(-7\)[/tex] is not greater than 10.
- [tex]\(5\)[/tex] is not greater than 10.
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(24\)[/tex] is not less than 20.
- [tex]\(32\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(18\)[/tex]. Therefore, [tex]\(\{18\}\)[/tex].
The count of numbers satisfying the inequality: 1.
2. For the set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]:
- [tex]\(-9\)[/tex] is not greater than 10.
- [tex]\(7\)[/tex] is not greater than 10.
- [tex]\(15\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(26\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(15\)[/tex]. Therefore, [tex]\(\{15\}\)[/tex].
The count of numbers satisfying the inequality: 1.
3. For the set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]:
- [tex]\(16\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(17\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(23\)[/tex] is not less than 20.
- [tex]\(24\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(16\)[/tex] and [tex]\(17\)[/tex]. Therefore, [tex]\(\{16, 17\}\)[/tex].
The count of numbers satisfying the inequality: 2.
4. For the set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]:
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(19\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(20\)[/tex] is not less than 20.
- [tex]\(21\)[/tex] is not less than 20.
- [tex]\(22\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(18\)[/tex] and [tex]\(19\)[/tex]. Therefore, [tex]\(\{18, 19\}\)[/tex].
The count of numbers satisfying the inequality: 2.
Summarizing the results:
- For set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]: 1 number (18)
- For set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]: 1 number (15)
- For set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]: 2 numbers (16, 17)
- For set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]: 2 numbers (18, 19)
Sets with the maximum numbers satisfying the inequality are:
[tex]\(\{16, 17, 22, 23, 24\}\)[/tex] and [tex]\(\{18, 19, 20, 21, 22\}\)[/tex] each with 2 numbers within the range [tex]\( 10 < x < 20 \)[/tex].
We have a compound inequality:
[tex]\[ 10 < x < 20 \][/tex]
This means we are looking for numbers that satisfy:
- Greater than 10
- Less than 20
Let's check each set of numbers to see which numbers satisfy the compound inequality [tex]\( 10 < x < 20 \)[/tex].
1. For the set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]:
- [tex]\(-7\)[/tex] is not greater than 10.
- [tex]\(5\)[/tex] is not greater than 10.
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(24\)[/tex] is not less than 20.
- [tex]\(32\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(18\)[/tex]. Therefore, [tex]\(\{18\}\)[/tex].
The count of numbers satisfying the inequality: 1.
2. For the set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]:
- [tex]\(-9\)[/tex] is not greater than 10.
- [tex]\(7\)[/tex] is not greater than 10.
- [tex]\(15\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(26\)[/tex] is not less than 20.
So, the only number in this set that satisfies the inequality is [tex]\(15\)[/tex]. Therefore, [tex]\(\{15\}\)[/tex].
The count of numbers satisfying the inequality: 1.
3. For the set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]:
- [tex]\(16\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(17\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(22\)[/tex] is not less than 20.
- [tex]\(23\)[/tex] is not less than 20.
- [tex]\(24\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(16\)[/tex] and [tex]\(17\)[/tex]. Therefore, [tex]\(\{16, 17\}\)[/tex].
The count of numbers satisfying the inequality: 2.
4. For the set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]:
- [tex]\(18\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(19\)[/tex] is greater than 10 and less than 20. ✓
- [tex]\(20\)[/tex] is not less than 20.
- [tex]\(21\)[/tex] is not less than 20.
- [tex]\(22\)[/tex] is not less than 20.
So, the numbers in this set that satisfy the inequality are [tex]\(18\)[/tex] and [tex]\(19\)[/tex]. Therefore, [tex]\(\{18, 19\}\)[/tex].
The count of numbers satisfying the inequality: 2.
Summarizing the results:
- For set [tex]\(\{-7, 5, 18, 24, 32\}\)[/tex]: 1 number (18)
- For set [tex]\(\{-9, 7, 15, 22, 26\}\)[/tex]: 1 number (15)
- For set [tex]\(\{16, 17, 22, 23, 24\}\)[/tex]: 2 numbers (16, 17)
- For set [tex]\(\{18, 19, 20, 21, 22\}\)[/tex]: 2 numbers (18, 19)
Sets with the maximum numbers satisfying the inequality are:
[tex]\(\{16, 17, 22, 23, 24\}\)[/tex] and [tex]\(\{18, 19, 20, 21, 22\}\)[/tex] each with 2 numbers within the range [tex]\( 10 < x < 20 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.