Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the equation of the line that best fits the given points, we need to find the slope and the intercept of the line. The points given are:
[tex]\[ (-2, 12), (-1, 7), (0, 2), (1, -3), (2, -8) \][/tex]
Follow these steps to find the equation of the line:
1. List the x- and y-values:
[tex]\[ \begin{aligned} &x: -2, -1, 0, 1, 2 \\ &y: 12, 7, 2, -3, -8 \\ \end{aligned} \][/tex]
2. Calculate the slope (m) and intercept (b) using the least squares method:
The general form of the linear equation is:
[tex]\[ y = mx + b \][/tex]
We need to calculate the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]. The formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex] when we have a set of points [tex]\((x_i, y_i)\)[/tex] are:
[tex]\[ m = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
[tex]\[ b = \frac{(\sum y_i)(\sum x_i^2) - (\sum x_i)(\sum x_i y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
Here, [tex]\( n \)[/tex] is the number of points, which is 5 in this case.
Given our data, we have:
[tex]\[ \begin{aligned} & \sum x_i = -2 + (-1) + 0 + 1 + 2 = 0 \\ & \sum y_i = 12 + 7 + 2 - 3 - 8 = 10 \\ & \sum x_i y_i = (-2)(12) + (-1)(7) + (0)(2) + (1)(-3) + (2)(-8) = -24 - 7 + 0 - 3 - 16 = -50 \\ & \sum x_i^2 = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\ \end{aligned} \][/tex]
Now plug these sums into the formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ m = \frac{5(-50) - (0)(10)}{5(10) - (0)^2} = \frac{-250}{50} = -5 \][/tex]
[tex]\[ b = \frac{(10)(10) - (0)(-50)}{5(10) - (0)^2} = \frac{100}{50} = 2 \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\(-5\)[/tex] and the intercept [tex]\( b \)[/tex] is [tex]\(2\)[/tex].
3. Write the equation of the line:
[tex]\[ y = -5x + 2 \][/tex]
4. Match the line equation with the options given:
D. [tex]\( y=-5x+2 \)[/tex]
Hence, the equation of the line represented by the table of points is:
[tex]\[ \boxed{D. \, y = -5x + 2} \][/tex]
[tex]\[ (-2, 12), (-1, 7), (0, 2), (1, -3), (2, -8) \][/tex]
Follow these steps to find the equation of the line:
1. List the x- and y-values:
[tex]\[ \begin{aligned} &x: -2, -1, 0, 1, 2 \\ &y: 12, 7, 2, -3, -8 \\ \end{aligned} \][/tex]
2. Calculate the slope (m) and intercept (b) using the least squares method:
The general form of the linear equation is:
[tex]\[ y = mx + b \][/tex]
We need to calculate the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]. The formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex] when we have a set of points [tex]\((x_i, y_i)\)[/tex] are:
[tex]\[ m = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
[tex]\[ b = \frac{(\sum y_i)(\sum x_i^2) - (\sum x_i)(\sum x_i y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
Here, [tex]\( n \)[/tex] is the number of points, which is 5 in this case.
Given our data, we have:
[tex]\[ \begin{aligned} & \sum x_i = -2 + (-1) + 0 + 1 + 2 = 0 \\ & \sum y_i = 12 + 7 + 2 - 3 - 8 = 10 \\ & \sum x_i y_i = (-2)(12) + (-1)(7) + (0)(2) + (1)(-3) + (2)(-8) = -24 - 7 + 0 - 3 - 16 = -50 \\ & \sum x_i^2 = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\ \end{aligned} \][/tex]
Now plug these sums into the formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ m = \frac{5(-50) - (0)(10)}{5(10) - (0)^2} = \frac{-250}{50} = -5 \][/tex]
[tex]\[ b = \frac{(10)(10) - (0)(-50)}{5(10) - (0)^2} = \frac{100}{50} = 2 \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\(-5\)[/tex] and the intercept [tex]\( b \)[/tex] is [tex]\(2\)[/tex].
3. Write the equation of the line:
[tex]\[ y = -5x + 2 \][/tex]
4. Match the line equation with the options given:
D. [tex]\( y=-5x+2 \)[/tex]
Hence, the equation of the line represented by the table of points is:
[tex]\[ \boxed{D. \, y = -5x + 2} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.