Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the equation of the line that best fits the given points, we need to find the slope and the intercept of the line. The points given are:
[tex]\[ (-2, 12), (-1, 7), (0, 2), (1, -3), (2, -8) \][/tex]
Follow these steps to find the equation of the line:
1. List the x- and y-values:
[tex]\[ \begin{aligned} &x: -2, -1, 0, 1, 2 \\ &y: 12, 7, 2, -3, -8 \\ \end{aligned} \][/tex]
2. Calculate the slope (m) and intercept (b) using the least squares method:
The general form of the linear equation is:
[tex]\[ y = mx + b \][/tex]
We need to calculate the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]. The formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex] when we have a set of points [tex]\((x_i, y_i)\)[/tex] are:
[tex]\[ m = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
[tex]\[ b = \frac{(\sum y_i)(\sum x_i^2) - (\sum x_i)(\sum x_i y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
Here, [tex]\( n \)[/tex] is the number of points, which is 5 in this case.
Given our data, we have:
[tex]\[ \begin{aligned} & \sum x_i = -2 + (-1) + 0 + 1 + 2 = 0 \\ & \sum y_i = 12 + 7 + 2 - 3 - 8 = 10 \\ & \sum x_i y_i = (-2)(12) + (-1)(7) + (0)(2) + (1)(-3) + (2)(-8) = -24 - 7 + 0 - 3 - 16 = -50 \\ & \sum x_i^2 = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\ \end{aligned} \][/tex]
Now plug these sums into the formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ m = \frac{5(-50) - (0)(10)}{5(10) - (0)^2} = \frac{-250}{50} = -5 \][/tex]
[tex]\[ b = \frac{(10)(10) - (0)(-50)}{5(10) - (0)^2} = \frac{100}{50} = 2 \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\(-5\)[/tex] and the intercept [tex]\( b \)[/tex] is [tex]\(2\)[/tex].
3. Write the equation of the line:
[tex]\[ y = -5x + 2 \][/tex]
4. Match the line equation with the options given:
D. [tex]\( y=-5x+2 \)[/tex]
Hence, the equation of the line represented by the table of points is:
[tex]\[ \boxed{D. \, y = -5x + 2} \][/tex]
[tex]\[ (-2, 12), (-1, 7), (0, 2), (1, -3), (2, -8) \][/tex]
Follow these steps to find the equation of the line:
1. List the x- and y-values:
[tex]\[ \begin{aligned} &x: -2, -1, 0, 1, 2 \\ &y: 12, 7, 2, -3, -8 \\ \end{aligned} \][/tex]
2. Calculate the slope (m) and intercept (b) using the least squares method:
The general form of the linear equation is:
[tex]\[ y = mx + b \][/tex]
We need to calculate the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]. The formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex] when we have a set of points [tex]\((x_i, y_i)\)[/tex] are:
[tex]\[ m = \frac{n(\sum x_i y_i) - (\sum x_i)(\sum y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
[tex]\[ b = \frac{(\sum y_i)(\sum x_i^2) - (\sum x_i)(\sum x_i y_i)}{n(\sum x_i^2) - (\sum x_i)^2} \][/tex]
Here, [tex]\( n \)[/tex] is the number of points, which is 5 in this case.
Given our data, we have:
[tex]\[ \begin{aligned} & \sum x_i = -2 + (-1) + 0 + 1 + 2 = 0 \\ & \sum y_i = 12 + 7 + 2 - 3 - 8 = 10 \\ & \sum x_i y_i = (-2)(12) + (-1)(7) + (0)(2) + (1)(-3) + (2)(-8) = -24 - 7 + 0 - 3 - 16 = -50 \\ & \sum x_i^2 = (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 = 4 + 1 + 0 + 1 + 4 = 10 \\ \end{aligned} \][/tex]
Now plug these sums into the formulas for [tex]\( m \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ m = \frac{5(-50) - (0)(10)}{5(10) - (0)^2} = \frac{-250}{50} = -5 \][/tex]
[tex]\[ b = \frac{(10)(10) - (0)(-50)}{5(10) - (0)^2} = \frac{100}{50} = 2 \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\(-5\)[/tex] and the intercept [tex]\( b \)[/tex] is [tex]\(2\)[/tex].
3. Write the equation of the line:
[tex]\[ y = -5x + 2 \][/tex]
4. Match the line equation with the options given:
D. [tex]\( y=-5x+2 \)[/tex]
Hence, the equation of the line represented by the table of points is:
[tex]\[ \boxed{D. \, y = -5x + 2} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.