Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the question, we need to translate the given argument into its symbolic representation logically.
Here is the argument provided:
1. If a polygon has exactly three sides (p), then it is a triangle (q).
2. Jeri drew a polygon with exactly three sides (p).
3. Therefore, Jeri drew a triangle (q).
Let's analyze this step-by-step using symbolic logic:
1. The first statement, "If a polygon has exactly three sides, then it is a triangle," can be represented as [tex]\( p \rightarrow q \)[/tex].
2. The second statement, "Jeri drew a polygon with exactly three sides," is given as [tex]\( p \)[/tex].
3. The conclusion drawn from these statements is "Therefore, Jeri drew a triangle," signified as [tex]\( \therefore q \)[/tex].
From the above analysis, we see that the given statements form an argument where:
- The first line [tex]\( p \rightarrow q \)[/tex] represents the conditional statement.
- The second line [tex]\( p \)[/tex] represents the given fact.
- The conclusion line [tex]\( \therefore q \)[/tex] is derived from the premises given.
So, the symbolic representation resembling this argument must reflect this logical sequence.
The correct choice is:
D.
[tex]\[ \begin{tabular}{|c|} \hline p \rightarrow q \\ \hline p \\ \hline \therefore q \\ \hline \end{tabular} \][/tex]
This is the symbolic representation of the logical argument provided in the question.
Here is the argument provided:
1. If a polygon has exactly three sides (p), then it is a triangle (q).
2. Jeri drew a polygon with exactly three sides (p).
3. Therefore, Jeri drew a triangle (q).
Let's analyze this step-by-step using symbolic logic:
1. The first statement, "If a polygon has exactly three sides, then it is a triangle," can be represented as [tex]\( p \rightarrow q \)[/tex].
2. The second statement, "Jeri drew a polygon with exactly three sides," is given as [tex]\( p \)[/tex].
3. The conclusion drawn from these statements is "Therefore, Jeri drew a triangle," signified as [tex]\( \therefore q \)[/tex].
From the above analysis, we see that the given statements form an argument where:
- The first line [tex]\( p \rightarrow q \)[/tex] represents the conditional statement.
- The second line [tex]\( p \)[/tex] represents the given fact.
- The conclusion line [tex]\( \therefore q \)[/tex] is derived from the premises given.
So, the symbolic representation resembling this argument must reflect this logical sequence.
The correct choice is:
D.
[tex]\[ \begin{tabular}{|c|} \hline p \rightarrow q \\ \hline p \\ \hline \therefore q \\ \hline \end{tabular} \][/tex]
This is the symbolic representation of the logical argument provided in the question.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.