Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's address each part of the question step-by-step:
### Part (a)
We start by demonstrating that the distance [tex]\( XZ \)[/tex] can be expressed as [tex]\( XZ = x \sqrt{2(1 - \cos \theta)} \)[/tex].
1. Establish the Scenario:
Points [tex]\( X \)[/tex] and [tex]\( Z \)[/tex] are separated by an inaccessible ridge. The surveyor chooses point [tex]\( Y \)[/tex], which is equidistant from both [tex]\( X \)[/tex] and [tex]\( Z \)[/tex]. This creates two sides of a triangle, [tex]\( XY \)[/tex] and [tex]\( YZ \)[/tex], both equal to [tex]\( x \)[/tex].
2. Use of the Law of Cosines:
The law of cosines for triangle [tex]\( XYZ \)[/tex] states:
[tex]\[ XZ^2 = XY^2 + YZ^2 - 2 \cdot XY \cdot YZ \cdot \cos(\theta) \][/tex]
3. Substitute Known Variables:
Since [tex]\( XY = YZ = x \)[/tex]:
[tex]\[ XZ^2 = x^2 + x^2 - 2 \cdot x \cdot x \cdot \cos(\theta) \][/tex]
4. Simplify the Equation:
[tex]\[ XZ^2 = 2x^2 - 2x^2 \cos(\theta) \][/tex]
Factor out [tex]\( 2x^2 \)[/tex] from the right-hand side:
[tex]\[ XZ^2 = 2x^2 \left(1 - \cos(\theta)\right) \][/tex]
5. Taking the Square Root of both sides to solve for [tex]\( XZ \)[/tex]:
[tex]\[ XZ = x \sqrt{2 \left(1 - \cos(\theta)\right)} \][/tex]
Thus, we have shown that [tex]\( XZ = x \sqrt{2(1 - \cos \theta)} \)[/tex].
### Part (b)
Now, let's calculate [tex]\( XZ \)[/tex] given [tex]\( x = 240 \, \text{km} \)[/tex] and [tex]\( \theta = 132^\circ \)[/tex].
1. Convert the Angle to Radians:
We first convert [tex]\( \theta \)[/tex] from degrees to radians since trigonometric functions typically use radians. The angle in radians is:
[tex]\[ \theta_{\text{radians}} = 132^\circ \times \left(\frac{\pi}{180^\circ}\right) \approx 2.3038 \, \text{radians} \][/tex]
2. Calculate [tex]\( \cos(\theta_{\text{radians}}) \)[/tex]:
For [tex]\( \theta = 132^\circ \)[/tex]:
[tex]\[ \cos(\theta_{\text{radians}}) \approx \cos(2.3038) \approx -0.6691 \][/tex]
3. Substitute into the Equation:
Using the expression from part (a):
[tex]\[ XZ = 240 \times \sqrt{2 \left(1 - \cos(132^\circ)\right)} \][/tex]
Substitute [tex]\(\cos(132^\circ)\)[/tex]:
[tex]\[ XZ = 240 \times \sqrt{2 \left(1 - (-0.6691)\right)} \][/tex]
Simplify inside the square root:
[tex]\[ XZ = 240 \times \sqrt{2 \left(1 + 0.6691\right)} \][/tex]
[tex]\[ XZ = 240 \times \sqrt{2 \times 1.6691} \][/tex]
[tex]\[ XZ = 240 \times \sqrt{3.3382} \][/tex]
[tex]\[ XZ \approx 240 \times 1.826 \][/tex]
4. Multiply and Round:
[tex]\[ XZ \approx 438.50181966844843 \, \text{km} \][/tex]
Rounding this result to the nearest kilometre:
[tex]\[ XZ \approx 439 \, \text{km} \][/tex]
Therefore, the distance [tex]\( XZ \)[/tex] to the nearest kilometre is [tex]\( 439 \)[/tex] km.
### Part (a)
We start by demonstrating that the distance [tex]\( XZ \)[/tex] can be expressed as [tex]\( XZ = x \sqrt{2(1 - \cos \theta)} \)[/tex].
1. Establish the Scenario:
Points [tex]\( X \)[/tex] and [tex]\( Z \)[/tex] are separated by an inaccessible ridge. The surveyor chooses point [tex]\( Y \)[/tex], which is equidistant from both [tex]\( X \)[/tex] and [tex]\( Z \)[/tex]. This creates two sides of a triangle, [tex]\( XY \)[/tex] and [tex]\( YZ \)[/tex], both equal to [tex]\( x \)[/tex].
2. Use of the Law of Cosines:
The law of cosines for triangle [tex]\( XYZ \)[/tex] states:
[tex]\[ XZ^2 = XY^2 + YZ^2 - 2 \cdot XY \cdot YZ \cdot \cos(\theta) \][/tex]
3. Substitute Known Variables:
Since [tex]\( XY = YZ = x \)[/tex]:
[tex]\[ XZ^2 = x^2 + x^2 - 2 \cdot x \cdot x \cdot \cos(\theta) \][/tex]
4. Simplify the Equation:
[tex]\[ XZ^2 = 2x^2 - 2x^2 \cos(\theta) \][/tex]
Factor out [tex]\( 2x^2 \)[/tex] from the right-hand side:
[tex]\[ XZ^2 = 2x^2 \left(1 - \cos(\theta)\right) \][/tex]
5. Taking the Square Root of both sides to solve for [tex]\( XZ \)[/tex]:
[tex]\[ XZ = x \sqrt{2 \left(1 - \cos(\theta)\right)} \][/tex]
Thus, we have shown that [tex]\( XZ = x \sqrt{2(1 - \cos \theta)} \)[/tex].
### Part (b)
Now, let's calculate [tex]\( XZ \)[/tex] given [tex]\( x = 240 \, \text{km} \)[/tex] and [tex]\( \theta = 132^\circ \)[/tex].
1. Convert the Angle to Radians:
We first convert [tex]\( \theta \)[/tex] from degrees to radians since trigonometric functions typically use radians. The angle in radians is:
[tex]\[ \theta_{\text{radians}} = 132^\circ \times \left(\frac{\pi}{180^\circ}\right) \approx 2.3038 \, \text{radians} \][/tex]
2. Calculate [tex]\( \cos(\theta_{\text{radians}}) \)[/tex]:
For [tex]\( \theta = 132^\circ \)[/tex]:
[tex]\[ \cos(\theta_{\text{radians}}) \approx \cos(2.3038) \approx -0.6691 \][/tex]
3. Substitute into the Equation:
Using the expression from part (a):
[tex]\[ XZ = 240 \times \sqrt{2 \left(1 - \cos(132^\circ)\right)} \][/tex]
Substitute [tex]\(\cos(132^\circ)\)[/tex]:
[tex]\[ XZ = 240 \times \sqrt{2 \left(1 - (-0.6691)\right)} \][/tex]
Simplify inside the square root:
[tex]\[ XZ = 240 \times \sqrt{2 \left(1 + 0.6691\right)} \][/tex]
[tex]\[ XZ = 240 \times \sqrt{2 \times 1.6691} \][/tex]
[tex]\[ XZ = 240 \times \sqrt{3.3382} \][/tex]
[tex]\[ XZ \approx 240 \times 1.826 \][/tex]
4. Multiply and Round:
[tex]\[ XZ \approx 438.50181966844843 \, \text{km} \][/tex]
Rounding this result to the nearest kilometre:
[tex]\[ XZ \approx 439 \, \text{km} \][/tex]
Therefore, the distance [tex]\( XZ \)[/tex] to the nearest kilometre is [tex]\( 439 \)[/tex] km.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.