Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the correct rotation rule, we need to examine how each point is transformed through rotation.
Let's start with point [tex]\( A \)[/tex]. Given:
[tex]\[ A = (-3, 4) \][/tex]
[tex]\[ A' = (4, 3) \][/tex]
We notice that one common property of rotation transformations is the relationship between the original point and its image. Specifically, we can recognize the behavior of 90-degree increments in rotations around the origin.
Let's explore the general rotation rules around the origin:
1. 90 Degrees Clockwise:
- Formula: [tex]\( (x, y) \to (y, -x) \)[/tex]
2. 180 Degrees:
- Formula: [tex]\( (x, y) \to (-x, -y) \)[/tex]
3. 270 Degrees Clockwise (or 90 Degrees Counterclockwise):
- Formula: [tex]\( (x, y) \to (-y, x) \)[/tex]
4. 360 Degrees:
- Formula: (x, y) \to (x, y) (no change)
We will apply these transformations to point [tex]\( A \)[/tex] and see which matches [tex]\( A' \)[/tex].
### Applying the Rotation Rules
1. 90 Degrees Clockwise:
- Applying: [tex]\( (-3, 4) \to (4, -(-3)) = (4, 3) \)[/tex]
- This matches [tex]\( A' = (4, 3) \)[/tex].
2. 180 Degrees:
- Applying: [tex]\( (-3, 4) \to (-( -3), -4) = (3, -4) \)[/tex]
- This does not match [tex]\( A' = (4, 3) \)[/tex].
3. 270 Degrees Clockwise (or 90 Degrees Counterclockwise):
- Applying: [tex]\( (-3, 4) \to (-4, 3) \)[/tex]
- This does not match [tex]\( A' = (4, 3) \)[/tex].
4. 360 Degrees:
- Applying: [tex]\( (-3, 4) \to (-3, 4) \)[/tex]
- This does not match [tex]\( A' = (4, 3) \)[/tex].
By this result, it looks like a 90-degree clockwise rotation maps [tex]\( A \)[/tex] to [tex]\( A' \)[/tex]. To ensure this rule applies consistently, we should verify it with points [tex]\( B \)[/tex] and [tex]\( C \)[/tex].
### Checking for Point [tex]\( B \)[/tex]:
Given:
[tex]\[ B = (4, -5) \][/tex]
[tex]\[ B' = (-5, -4) \][/tex]
1. 90 Degrees Clockwise:
- Applying: [tex]\( (4, -5) \to (-5, -(4)) = (-5, -4) \)[/tex]
- This matches [tex]\( B' = (-5, -4) \)[/tex].
### Checking for Point [tex]\( C \)[/tex]:
Given:
[tex]\[ C = (1, 6) \][/tex]
[tex]\[ C' = (6, -1) \][/tex]
1. 90 Degrees Clockwise:
- Applying: [tex]\( (1, 6) \to (6, -1) = (6, -1) \)[/tex]
- This matches [tex]\( C' = (6, -1) \)[/tex].
Since the transformation for all points [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] align with the 90-degree clockwise rotation rule, we can conclusively determine:
The rule describing the rotation is [tex]\( R_{0,90^{\circ}} \)[/tex].
Let's start with point [tex]\( A \)[/tex]. Given:
[tex]\[ A = (-3, 4) \][/tex]
[tex]\[ A' = (4, 3) \][/tex]
We notice that one common property of rotation transformations is the relationship between the original point and its image. Specifically, we can recognize the behavior of 90-degree increments in rotations around the origin.
Let's explore the general rotation rules around the origin:
1. 90 Degrees Clockwise:
- Formula: [tex]\( (x, y) \to (y, -x) \)[/tex]
2. 180 Degrees:
- Formula: [tex]\( (x, y) \to (-x, -y) \)[/tex]
3. 270 Degrees Clockwise (or 90 Degrees Counterclockwise):
- Formula: [tex]\( (x, y) \to (-y, x) \)[/tex]
4. 360 Degrees:
- Formula: (x, y) \to (x, y) (no change)
We will apply these transformations to point [tex]\( A \)[/tex] and see which matches [tex]\( A' \)[/tex].
### Applying the Rotation Rules
1. 90 Degrees Clockwise:
- Applying: [tex]\( (-3, 4) \to (4, -(-3)) = (4, 3) \)[/tex]
- This matches [tex]\( A' = (4, 3) \)[/tex].
2. 180 Degrees:
- Applying: [tex]\( (-3, 4) \to (-( -3), -4) = (3, -4) \)[/tex]
- This does not match [tex]\( A' = (4, 3) \)[/tex].
3. 270 Degrees Clockwise (or 90 Degrees Counterclockwise):
- Applying: [tex]\( (-3, 4) \to (-4, 3) \)[/tex]
- This does not match [tex]\( A' = (4, 3) \)[/tex].
4. 360 Degrees:
- Applying: [tex]\( (-3, 4) \to (-3, 4) \)[/tex]
- This does not match [tex]\( A' = (4, 3) \)[/tex].
By this result, it looks like a 90-degree clockwise rotation maps [tex]\( A \)[/tex] to [tex]\( A' \)[/tex]. To ensure this rule applies consistently, we should verify it with points [tex]\( B \)[/tex] and [tex]\( C \)[/tex].
### Checking for Point [tex]\( B \)[/tex]:
Given:
[tex]\[ B = (4, -5) \][/tex]
[tex]\[ B' = (-5, -4) \][/tex]
1. 90 Degrees Clockwise:
- Applying: [tex]\( (4, -5) \to (-5, -(4)) = (-5, -4) \)[/tex]
- This matches [tex]\( B' = (-5, -4) \)[/tex].
### Checking for Point [tex]\( C \)[/tex]:
Given:
[tex]\[ C = (1, 6) \][/tex]
[tex]\[ C' = (6, -1) \][/tex]
1. 90 Degrees Clockwise:
- Applying: [tex]\( (1, 6) \to (6, -1) = (6, -1) \)[/tex]
- This matches [tex]\( C' = (6, -1) \)[/tex].
Since the transformation for all points [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] align with the 90-degree clockwise rotation rule, we can conclusively determine:
The rule describing the rotation is [tex]\( R_{0,90^{\circ}} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.