Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's go through the detailed steps to solve this problem, given the question and result specifications.
### Problem:
An electron starts from rest and falls through a potential rise of 80 V. What is the final speed of the electron?
### Concepts:
1. Electron Charge (q): -1.6 x 10^-19 C
2. Mass of Electron (m): 9.11 x 10^-31 kg
3. Potential Difference (V): 80 V
4. Potential Energy Lost (PE lost): This energy is converted into kinetic energy (KE gained)
### Step-by-Step Solution:
1. Calculate the Potential Energy Lost:
The potential energy lost by the electron when it falls through a potential rise is given by the product of the charge and the potential difference:
[tex]\[ \text{PE}_{\text{lost}} = q \cdot V \][/tex]
Since the electron is negatively charged, the potential energy lost (in magnitude) is:
[tex]\[ \text{PE}_{\text{lost}} = \left| q \cdot V \right| = \left| (-1.6 \times 10^{-19} \, \mathrm{C}) \times 80 \, \mathrm{V} \right| = 1.28 \times 10^{-17} \, \mathrm{J} \][/tex]
2. Convert the Lost Potential Energy to Kinetic Energy:
From the conservation of energy principle, the potential energy lost is converted into kinetic energy gained. Thus,
[tex]\[ \text{KE}_{\text{gained}} = \text{PE}_{\text{lost}} = 1.28 \times 10^{-17} \, \mathrm{J} \][/tex]
3. Express the Kinetic Energy in Terms of Final Speed:
The kinetic energy (KE) can be expressed in terms of the mass (m) and final speed (v) of the electron:
[tex]\[ \text{KE} = \frac{1}{2} m v^2 \][/tex]
4. Solve for Final Speed (v):
Rearrange the kinetic energy formula to solve for the final speed (v):
[tex]\[ \frac{1}{2} m v^2 = \text{KE} \][/tex]
[tex]\[ v^2 = \frac{2 \cdot \text{KE}}{m} \][/tex]
[tex]\[ v = \sqrt{\frac{2 \cdot \text{KE}}{m}} \][/tex]
Plug in the known values:
[tex]\[ v = \sqrt{\frac{2 \cdot 1.28 \times 10^{-17} \, \mathrm{J}}{9.11 \times 10^{-31} \, \mathrm{kg}}} \][/tex]
Simplify inside the square root:
[tex]\[ v = \sqrt{\frac{2.56 \times 10^{-17} \, \mathrm{J}}{9.11 \times 10^{-31} \, \mathrm{kg}}} \][/tex]
5. Calculate the Final Speed:
[tex]\[ v \approx \sqrt{2.81 \times 10^{13}} \, \mathrm{m/s} \][/tex]
[tex]\[ v \approx 5301036.495 \, \mathrm{m/s} \][/tex]
### Final Answer:
The final speed of the electron after falling through a potential difference of 80 V is approximately [tex]\( 5.3 \times 10^6 \, \text{m/s} \)[/tex].
### Problem:
An electron starts from rest and falls through a potential rise of 80 V. What is the final speed of the electron?
### Concepts:
1. Electron Charge (q): -1.6 x 10^-19 C
2. Mass of Electron (m): 9.11 x 10^-31 kg
3. Potential Difference (V): 80 V
4. Potential Energy Lost (PE lost): This energy is converted into kinetic energy (KE gained)
### Step-by-Step Solution:
1. Calculate the Potential Energy Lost:
The potential energy lost by the electron when it falls through a potential rise is given by the product of the charge and the potential difference:
[tex]\[ \text{PE}_{\text{lost}} = q \cdot V \][/tex]
Since the electron is negatively charged, the potential energy lost (in magnitude) is:
[tex]\[ \text{PE}_{\text{lost}} = \left| q \cdot V \right| = \left| (-1.6 \times 10^{-19} \, \mathrm{C}) \times 80 \, \mathrm{V} \right| = 1.28 \times 10^{-17} \, \mathrm{J} \][/tex]
2. Convert the Lost Potential Energy to Kinetic Energy:
From the conservation of energy principle, the potential energy lost is converted into kinetic energy gained. Thus,
[tex]\[ \text{KE}_{\text{gained}} = \text{PE}_{\text{lost}} = 1.28 \times 10^{-17} \, \mathrm{J} \][/tex]
3. Express the Kinetic Energy in Terms of Final Speed:
The kinetic energy (KE) can be expressed in terms of the mass (m) and final speed (v) of the electron:
[tex]\[ \text{KE} = \frac{1}{2} m v^2 \][/tex]
4. Solve for Final Speed (v):
Rearrange the kinetic energy formula to solve for the final speed (v):
[tex]\[ \frac{1}{2} m v^2 = \text{KE} \][/tex]
[tex]\[ v^2 = \frac{2 \cdot \text{KE}}{m} \][/tex]
[tex]\[ v = \sqrt{\frac{2 \cdot \text{KE}}{m}} \][/tex]
Plug in the known values:
[tex]\[ v = \sqrt{\frac{2 \cdot 1.28 \times 10^{-17} \, \mathrm{J}}{9.11 \times 10^{-31} \, \mathrm{kg}}} \][/tex]
Simplify inside the square root:
[tex]\[ v = \sqrt{\frac{2.56 \times 10^{-17} \, \mathrm{J}}{9.11 \times 10^{-31} \, \mathrm{kg}}} \][/tex]
5. Calculate the Final Speed:
[tex]\[ v \approx \sqrt{2.81 \times 10^{13}} \, \mathrm{m/s} \][/tex]
[tex]\[ v \approx 5301036.495 \, \mathrm{m/s} \][/tex]
### Final Answer:
The final speed of the electron after falling through a potential difference of 80 V is approximately [tex]\( 5.3 \times 10^6 \, \text{m/s} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.