At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the time [tex]\( t \)[/tex] at which the beekeeper should harvest the honey to maximize profit, we need to analyze the quadratic equation:
[tex]\[ P(t) = -16t^2 + 2050t + 150 \][/tex]
This is a standard quadratic equation of the form [tex]\( P(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 2050 \)[/tex], and [tex]\( c = 150 \)[/tex].
### Step-by-Step Solution
1. Identify the Coefficients:
- [tex]\( a = -16 \)[/tex]
- [tex]\( b = 2050 \)[/tex]
- [tex]\( c = 150 \)[/tex]
2. Determine the Formula for the Vertex:
- The maximum (or minimum) of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] occurs at [tex]\( t = -\frac{b}{2a} \)[/tex].
3. Plug the Coefficients into the Vertex Formula:
- Substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ t = -\frac{2050}{2 \cdot (-16)} \][/tex]
- Calculate the denominator:
[tex]\[ 2 \cdot (-16) = -32 \][/tex]
- Divide the numerator by the denominator:
[tex]\[ t = -\frac{2050}{-32} \][/tex]
- Simplify the fraction:
[tex]\[ t \approx 64.0625 \][/tex]
4. Maximum Profit:
- To find the maximum profit, substitute [tex]\( t = 64.0625 \)[/tex] back into the original equation [tex]\( P(t) \)[/tex]:
[tex]\[ P(64.0625) = -16(64.0625)^2 + 2050(64.0625) + 150 \][/tex]
- Evaluate each term:
- [tex]\( (64.0625)^2 \approx 4103.89 \)[/tex]
- [tex]\( -16 \times 4103.89 \approx -65662.24 \)[/tex]
- [tex]\( 2050 \times 64.0625 \approx 131728.13 \)[/tex]
- [tex]\( -65662.24 + 131728.13 + 150 \approx 65814.0625 \)[/tex]
Hence, the maximum profit is approximately 65814.0625 dollars.
### Conclusion
The beekeeper should wait approximately 64.0625 days to harvest the honey, in order to achieve a maximum profit of approximately 65814.0625 dollars.
[tex]\[ P(t) = -16t^2 + 2050t + 150 \][/tex]
This is a standard quadratic equation of the form [tex]\( P(t) = at^2 + bt + c \)[/tex], where [tex]\( a = -16 \)[/tex], [tex]\( b = 2050 \)[/tex], and [tex]\( c = 150 \)[/tex].
### Step-by-Step Solution
1. Identify the Coefficients:
- [tex]\( a = -16 \)[/tex]
- [tex]\( b = 2050 \)[/tex]
- [tex]\( c = 150 \)[/tex]
2. Determine the Formula for the Vertex:
- The maximum (or minimum) of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] occurs at [tex]\( t = -\frac{b}{2a} \)[/tex].
3. Plug the Coefficients into the Vertex Formula:
- Substitute [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ t = -\frac{2050}{2 \cdot (-16)} \][/tex]
- Calculate the denominator:
[tex]\[ 2 \cdot (-16) = -32 \][/tex]
- Divide the numerator by the denominator:
[tex]\[ t = -\frac{2050}{-32} \][/tex]
- Simplify the fraction:
[tex]\[ t \approx 64.0625 \][/tex]
4. Maximum Profit:
- To find the maximum profit, substitute [tex]\( t = 64.0625 \)[/tex] back into the original equation [tex]\( P(t) \)[/tex]:
[tex]\[ P(64.0625) = -16(64.0625)^2 + 2050(64.0625) + 150 \][/tex]
- Evaluate each term:
- [tex]\( (64.0625)^2 \approx 4103.89 \)[/tex]
- [tex]\( -16 \times 4103.89 \approx -65662.24 \)[/tex]
- [tex]\( 2050 \times 64.0625 \approx 131728.13 \)[/tex]
- [tex]\( -65662.24 + 131728.13 + 150 \approx 65814.0625 \)[/tex]
Hence, the maximum profit is approximately 65814.0625 dollars.
### Conclusion
The beekeeper should wait approximately 64.0625 days to harvest the honey, in order to achieve a maximum profit of approximately 65814.0625 dollars.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.