At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which of the given sets [tex]\( J \)[/tex], [tex]\( K \)[/tex], [tex]\( L \)[/tex], and [tex]\( M \)[/tex] are subsets of the set [tex]\( S \)[/tex], we need to check whether every element of these sets is also an element of [tex]\( S \)[/tex].
Given:
[tex]\[ S = \{ \text{dog}, \text{cat}, \text{pig}, \text{rabbit}, \text{squirrel}, \text{fish}, \text{hamster}, \text{elephant}, \text{zebra}, \text{snail} \} \][/tex]
Let's check each set one by one:
1. Set [tex]\( J \)[/tex]:
[tex]\[ J = \{ \text{rabbit}, \text{squirrel}, \text{hamster}, \text{zebra} \} \][/tex]
Checking elements of [tex]\( J \)[/tex] in [tex]\( S \)[/tex]:
- "rabbit" is in [tex]\( S \)[/tex]
- "squirrel" is in [tex]\( S \)[/tex]
- "hamster" is in [tex]\( S \)[/tex]
- "zebra" is in [tex]\( S \)[/tex]
Since all elements of [tex]\( J \)[/tex] are in [tex]\( S \)[/tex], [tex]\( J \)[/tex] is a subset of [tex]\( S \)[/tex]:
[tex]\[ J \subseteq S \][/tex]
2. Set [tex]\( K \)[/tex]:
[tex]\[ K = \{ \text{dog}, \text{cat}, \text{duck}, \text{snail} \} \][/tex]
Checking elements of [tex]\( K \)[/tex] in [tex]\( S \)[/tex]:
- "dog" is in [tex]\( S \)[/tex]
- "cat" is in [tex]\( S \)[/tex]
- "duck" is not in [tex]\( S \)[/tex]
- "snail" is in [tex]\( S \)[/tex]
Since "duck" is not in [tex]\( S \)[/tex], [tex]\( K \)[/tex] is not a subset of [tex]\( S \)[/tex]:
[tex]\[ K \nsubseteq S \][/tex]
3. Set [tex]\( L \)[/tex]:
[tex]\[ L = \{ \text{dog}, \text{cat}, \text{pig}, \text{hyena} \} \][/tex]
Checking elements of [tex]\( L \)[/tex] in [tex]\( S \)[/tex]:
- "dog" is in [tex]\( S \)[/tex]
- "cat" is in [tex]\( S \)[/tex]
- "pig" is in [tex]\( S \)[/tex]
- "hyena" is not in [tex]\( S \)[/tex]
Since "hyena" is not in [tex]\( S \)[/tex], [tex]\( L \)[/tex] is not a subset of [tex]\( S \)[/tex]:
[tex]\[ L \nsubseteq S \][/tex]
4. Set [tex]\( M \)[/tex]:
[tex]\[ M = \{ \text{rabbit}, \text{squirrel}, \text{hamster}, \text{snake} \} \][/tex]
Checking elements of [tex]\( M \)[/tex] in [tex]\( S \)[/tex]:
- "rabbit" is in [tex]\( S \)[/tex]
- "squirrel" is in [tex]\( S \)[/tex]
- "hamster" is in [tex]\( S \)[/tex]
- "snake" is not in [tex]\( S \)[/tex]
Since "snake" is not in [tex]\( S \)[/tex], [tex]\( M \)[/tex] is not a subset of [tex]\( S \)[/tex]:
[tex]\[ M \nsubseteq S \][/tex]
Based on the above analysis, the results are:
- [tex]\( J \)[/tex] is a subset of [tex]\( S \)[/tex]: [tex]\[ J \subseteq S \][/tex]
- [tex]\( K \)[/tex] is not a subset of [tex]\( S \)[/tex]
- [tex]\( L \)[/tex] is not a subset of [tex]\( S \)[/tex]
- [tex]\( M \)[/tex] is not a subset of [tex]\( S \)[/tex]
Thus, the only subset of [tex]\( S \)[/tex] from the given sets is [tex]\( J \)[/tex].
Given:
[tex]\[ S = \{ \text{dog}, \text{cat}, \text{pig}, \text{rabbit}, \text{squirrel}, \text{fish}, \text{hamster}, \text{elephant}, \text{zebra}, \text{snail} \} \][/tex]
Let's check each set one by one:
1. Set [tex]\( J \)[/tex]:
[tex]\[ J = \{ \text{rabbit}, \text{squirrel}, \text{hamster}, \text{zebra} \} \][/tex]
Checking elements of [tex]\( J \)[/tex] in [tex]\( S \)[/tex]:
- "rabbit" is in [tex]\( S \)[/tex]
- "squirrel" is in [tex]\( S \)[/tex]
- "hamster" is in [tex]\( S \)[/tex]
- "zebra" is in [tex]\( S \)[/tex]
Since all elements of [tex]\( J \)[/tex] are in [tex]\( S \)[/tex], [tex]\( J \)[/tex] is a subset of [tex]\( S \)[/tex]:
[tex]\[ J \subseteq S \][/tex]
2. Set [tex]\( K \)[/tex]:
[tex]\[ K = \{ \text{dog}, \text{cat}, \text{duck}, \text{snail} \} \][/tex]
Checking elements of [tex]\( K \)[/tex] in [tex]\( S \)[/tex]:
- "dog" is in [tex]\( S \)[/tex]
- "cat" is in [tex]\( S \)[/tex]
- "duck" is not in [tex]\( S \)[/tex]
- "snail" is in [tex]\( S \)[/tex]
Since "duck" is not in [tex]\( S \)[/tex], [tex]\( K \)[/tex] is not a subset of [tex]\( S \)[/tex]:
[tex]\[ K \nsubseteq S \][/tex]
3. Set [tex]\( L \)[/tex]:
[tex]\[ L = \{ \text{dog}, \text{cat}, \text{pig}, \text{hyena} \} \][/tex]
Checking elements of [tex]\( L \)[/tex] in [tex]\( S \)[/tex]:
- "dog" is in [tex]\( S \)[/tex]
- "cat" is in [tex]\( S \)[/tex]
- "pig" is in [tex]\( S \)[/tex]
- "hyena" is not in [tex]\( S \)[/tex]
Since "hyena" is not in [tex]\( S \)[/tex], [tex]\( L \)[/tex] is not a subset of [tex]\( S \)[/tex]:
[tex]\[ L \nsubseteq S \][/tex]
4. Set [tex]\( M \)[/tex]:
[tex]\[ M = \{ \text{rabbit}, \text{squirrel}, \text{hamster}, \text{snake} \} \][/tex]
Checking elements of [tex]\( M \)[/tex] in [tex]\( S \)[/tex]:
- "rabbit" is in [tex]\( S \)[/tex]
- "squirrel" is in [tex]\( S \)[/tex]
- "hamster" is in [tex]\( S \)[/tex]
- "snake" is not in [tex]\( S \)[/tex]
Since "snake" is not in [tex]\( S \)[/tex], [tex]\( M \)[/tex] is not a subset of [tex]\( S \)[/tex]:
[tex]\[ M \nsubseteq S \][/tex]
Based on the above analysis, the results are:
- [tex]\( J \)[/tex] is a subset of [tex]\( S \)[/tex]: [tex]\[ J \subseteq S \][/tex]
- [tex]\( K \)[/tex] is not a subset of [tex]\( S \)[/tex]
- [tex]\( L \)[/tex] is not a subset of [tex]\( S \)[/tex]
- [tex]\( M \)[/tex] is not a subset of [tex]\( S \)[/tex]
Thus, the only subset of [tex]\( S \)[/tex] from the given sets is [tex]\( J \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.