At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve this arithmetic sequence problem step by step.
We are given an arithmetic sequence with specific known elements:
- The first term [tex]\( a_1 = 16 \)[/tex]
- The third term [tex]\( a_3 = 28 \)[/tex]
- The fifth term [tex]\( a_5 = 52 \)[/tex]
In an arithmetic sequence, the difference between consecutive terms is constant and is called the "common difference," denoted by [tex]\( d \)[/tex].
Firstly, to find [tex]\( d \)[/tex], we know that:
[tex]\[ a_5 = a_1 + 4d \][/tex]
Given [tex]\( a_5 = 52 \)[/tex] and [tex]\( a_1 = 16 \)[/tex]:
[tex]\[ 52 = 16 + 4d \][/tex]
Solving for [tex]\( d \)[/tex]:
[tex]\[ 52 - 16 = 4d \][/tex]
[tex]\[ 36 = 4d \][/tex]
[tex]\[ d = \frac{36}{4} \][/tex]
[tex]\[ d = 9 \][/tex]
Now that we have the common difference [tex]\( d = 9 \)[/tex], we next need to find the missing number which is the fourth term [tex]\( a_4 \)[/tex].
Using the value of [tex]\( d \)[/tex] and the fact that [tex]\( a_3 = 28 \)[/tex]:
[tex]\[ a_4 = a_3 + d \][/tex]
[tex]\[ a_4 = 28 + 9 \][/tex]
[tex]\[ a_4 = 37 \][/tex]
Therefore, the missing number in the given arithmetic sequence [tex]\( 16, 28, \_\_, 52 \)[/tex] is [tex]\( \boxed{37} \)[/tex].
We are given an arithmetic sequence with specific known elements:
- The first term [tex]\( a_1 = 16 \)[/tex]
- The third term [tex]\( a_3 = 28 \)[/tex]
- The fifth term [tex]\( a_5 = 52 \)[/tex]
In an arithmetic sequence, the difference between consecutive terms is constant and is called the "common difference," denoted by [tex]\( d \)[/tex].
Firstly, to find [tex]\( d \)[/tex], we know that:
[tex]\[ a_5 = a_1 + 4d \][/tex]
Given [tex]\( a_5 = 52 \)[/tex] and [tex]\( a_1 = 16 \)[/tex]:
[tex]\[ 52 = 16 + 4d \][/tex]
Solving for [tex]\( d \)[/tex]:
[tex]\[ 52 - 16 = 4d \][/tex]
[tex]\[ 36 = 4d \][/tex]
[tex]\[ d = \frac{36}{4} \][/tex]
[tex]\[ d = 9 \][/tex]
Now that we have the common difference [tex]\( d = 9 \)[/tex], we next need to find the missing number which is the fourth term [tex]\( a_4 \)[/tex].
Using the value of [tex]\( d \)[/tex] and the fact that [tex]\( a_3 = 28 \)[/tex]:
[tex]\[ a_4 = a_3 + d \][/tex]
[tex]\[ a_4 = 28 + 9 \][/tex]
[tex]\[ a_4 = 37 \][/tex]
Therefore, the missing number in the given arithmetic sequence [tex]\( 16, 28, \_\_, 52 \)[/tex] is [tex]\( \boxed{37} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.