At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve this arithmetic sequence problem step by step.
We are given an arithmetic sequence with specific known elements:
- The first term [tex]\( a_1 = 16 \)[/tex]
- The third term [tex]\( a_3 = 28 \)[/tex]
- The fifth term [tex]\( a_5 = 52 \)[/tex]
In an arithmetic sequence, the difference between consecutive terms is constant and is called the "common difference," denoted by [tex]\( d \)[/tex].
Firstly, to find [tex]\( d \)[/tex], we know that:
[tex]\[ a_5 = a_1 + 4d \][/tex]
Given [tex]\( a_5 = 52 \)[/tex] and [tex]\( a_1 = 16 \)[/tex]:
[tex]\[ 52 = 16 + 4d \][/tex]
Solving for [tex]\( d \)[/tex]:
[tex]\[ 52 - 16 = 4d \][/tex]
[tex]\[ 36 = 4d \][/tex]
[tex]\[ d = \frac{36}{4} \][/tex]
[tex]\[ d = 9 \][/tex]
Now that we have the common difference [tex]\( d = 9 \)[/tex], we next need to find the missing number which is the fourth term [tex]\( a_4 \)[/tex].
Using the value of [tex]\( d \)[/tex] and the fact that [tex]\( a_3 = 28 \)[/tex]:
[tex]\[ a_4 = a_3 + d \][/tex]
[tex]\[ a_4 = 28 + 9 \][/tex]
[tex]\[ a_4 = 37 \][/tex]
Therefore, the missing number in the given arithmetic sequence [tex]\( 16, 28, \_\_, 52 \)[/tex] is [tex]\( \boxed{37} \)[/tex].
We are given an arithmetic sequence with specific known elements:
- The first term [tex]\( a_1 = 16 \)[/tex]
- The third term [tex]\( a_3 = 28 \)[/tex]
- The fifth term [tex]\( a_5 = 52 \)[/tex]
In an arithmetic sequence, the difference between consecutive terms is constant and is called the "common difference," denoted by [tex]\( d \)[/tex].
Firstly, to find [tex]\( d \)[/tex], we know that:
[tex]\[ a_5 = a_1 + 4d \][/tex]
Given [tex]\( a_5 = 52 \)[/tex] and [tex]\( a_1 = 16 \)[/tex]:
[tex]\[ 52 = 16 + 4d \][/tex]
Solving for [tex]\( d \)[/tex]:
[tex]\[ 52 - 16 = 4d \][/tex]
[tex]\[ 36 = 4d \][/tex]
[tex]\[ d = \frac{36}{4} \][/tex]
[tex]\[ d = 9 \][/tex]
Now that we have the common difference [tex]\( d = 9 \)[/tex], we next need to find the missing number which is the fourth term [tex]\( a_4 \)[/tex].
Using the value of [tex]\( d \)[/tex] and the fact that [tex]\( a_3 = 28 \)[/tex]:
[tex]\[ a_4 = a_3 + d \][/tex]
[tex]\[ a_4 = 28 + 9 \][/tex]
[tex]\[ a_4 = 37 \][/tex]
Therefore, the missing number in the given arithmetic sequence [tex]\( 16, 28, \_\_, 52 \)[/tex] is [tex]\( \boxed{37} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.