Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Claro, vamos a realizar la verificación de que [tex]\( AB \)[/tex] es simétrica para las dos parejas de matrices [tex]\( A \)[/tex] y [tex]\( B \)[/tex].
### Parte (a)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} = \begin{array}{cc} (2 \cdot 3 + 0 \cdot 0) & (2 \cdot 0 + 0 \cdot -10) \\ (0 \cdot 3 + 5 \cdot 0) & (0 \cdot 0 + 5 \cdot -10) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero tomamos las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} = \begin{array}{cc} (3 \cdot 2 + 0 \cdot 0) & (3 \cdot 0 + 0 \cdot 5) \\ (0 \cdot 2 + -10 \cdot 0) & (0 \cdot 0 + -10 \cdot 5) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Los dos son iguales, por lo que [tex]\( AB \)[/tex] es simétrica.
### Parte (b)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} = \begin{array}{cc} (0 \cdot 1 + -5 \cdot 2) & (0 \cdot 2 + -5 \cdot 0) \\ (-5 \cdot 1 + 1 \cdot 2) & (-5 \cdot 2 + 1 \cdot 0) \end{array} = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} = \begin{array}{cc} (1 \cdot 0 + 2 \cdot -5) & (1 \cdot -5 + 2 \cdot 1) \\ (2 \cdot 0 + 0 \cdot -5) & (2 \cdot -5 + 0 \cdot 1) \end{array} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Los dos no son iguales, por lo que [tex]\( AB \)[/tex] no es simétrica.
### Resumen
- En la parte (a), [tex]\( AB \)[/tex] resultó simétrica.
- En la parte (b), [tex]\( AB \)[/tex] no resultó simétrica.
### Parte (a)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} = \begin{array}{cc} (2 \cdot 3 + 0 \cdot 0) & (2 \cdot 0 + 0 \cdot -10) \\ (0 \cdot 3 + 5 \cdot 0) & (0 \cdot 0 + 5 \cdot -10) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero tomamos las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} = \begin{array}{cc} (3 \cdot 2 + 0 \cdot 0) & (3 \cdot 0 + 0 \cdot 5) \\ (0 \cdot 2 + -10 \cdot 0) & (0 \cdot 0 + -10 \cdot 5) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Los dos son iguales, por lo que [tex]\( AB \)[/tex] es simétrica.
### Parte (b)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} = \begin{array}{cc} (0 \cdot 1 + -5 \cdot 2) & (0 \cdot 2 + -5 \cdot 0) \\ (-5 \cdot 1 + 1 \cdot 2) & (-5 \cdot 2 + 1 \cdot 0) \end{array} = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} = \begin{array}{cc} (1 \cdot 0 + 2 \cdot -5) & (1 \cdot -5 + 2 \cdot 1) \\ (2 \cdot 0 + 0 \cdot -5) & (2 \cdot -5 + 0 \cdot 1) \end{array} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Los dos no son iguales, por lo que [tex]\( AB \)[/tex] no es simétrica.
### Resumen
- En la parte (a), [tex]\( AB \)[/tex] resultó simétrica.
- En la parte (b), [tex]\( AB \)[/tex] no resultó simétrica.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.