Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Claro, vamos a realizar la verificación de que [tex]\( AB \)[/tex] es simétrica para las dos parejas de matrices [tex]\( A \)[/tex] y [tex]\( B \)[/tex].
### Parte (a)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} = \begin{array}{cc} (2 \cdot 3 + 0 \cdot 0) & (2 \cdot 0 + 0 \cdot -10) \\ (0 \cdot 3 + 5 \cdot 0) & (0 \cdot 0 + 5 \cdot -10) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero tomamos las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} = \begin{array}{cc} (3 \cdot 2 + 0 \cdot 0) & (3 \cdot 0 + 0 \cdot 5) \\ (0 \cdot 2 + -10 \cdot 0) & (0 \cdot 0 + -10 \cdot 5) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Los dos son iguales, por lo que [tex]\( AB \)[/tex] es simétrica.
### Parte (b)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} = \begin{array}{cc} (0 \cdot 1 + -5 \cdot 2) & (0 \cdot 2 + -5 \cdot 0) \\ (-5 \cdot 1 + 1 \cdot 2) & (-5 \cdot 2 + 1 \cdot 0) \end{array} = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} = \begin{array}{cc} (1 \cdot 0 + 2 \cdot -5) & (1 \cdot -5 + 2 \cdot 1) \\ (2 \cdot 0 + 0 \cdot -5) & (2 \cdot -5 + 0 \cdot 1) \end{array} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Los dos no son iguales, por lo que [tex]\( AB \)[/tex] no es simétrica.
### Resumen
- En la parte (a), [tex]\( AB \)[/tex] resultó simétrica.
- En la parte (b), [tex]\( AB \)[/tex] no resultó simétrica.
### Parte (a)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} = \begin{array}{cc} (2 \cdot 3 + 0 \cdot 0) & (2 \cdot 0 + 0 \cdot -10) \\ (0 \cdot 3 + 5 \cdot 0) & (0 \cdot 0 + 5 \cdot -10) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero tomamos las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 3 & 0 \\ 0 & -10 \end{array} \begin{array}{cc} 2 & 0 \\ 0 & 5 \end{array} = \begin{array}{cc} (3 \cdot 2 + 0 \cdot 0) & (3 \cdot 0 + 0 \cdot 5) \\ (0 \cdot 2 + -10 \cdot 0) & (0 \cdot 0 + -10 \cdot 5) \end{array} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 6 & 0 \\ 0 & -50 \end{array} \][/tex]
Los dos son iguales, por lo que [tex]\( AB \)[/tex] es simétrica.
### Parte (b)
Dadas las matrices:
[tex]\[ A = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex]
[tex]\[ B = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex]
Paso 1: Calculemos [tex]\( AB \)[/tex].
[tex]\[ AB = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} = \begin{array}{cc} (0 \cdot 1 + -5 \cdot 2) & (0 \cdot 2 + -5 \cdot 0) \\ (-5 \cdot 1 + 1 \cdot 2) & (-5 \cdot 2 + 1 \cdot 0) \end{array} = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
Paso 2: Calculemos [tex]\( B^{\top} A^{\top} \)[/tex].
Primero las transpuestas:
[tex]\[ A^{\top} = \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} \][/tex] (como A es simétrica, A = [tex]\( A^{\top} \)[/tex])
[tex]\[ B^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \][/tex] (como B es simétrica, B = [tex]\( B^{\top} \)[/tex])
Luego calculamos el producto:
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array} \begin{array}{cc} 0 & -5 \\ -5 & 1 \end{array} = \begin{array}{cc} (1 \cdot 0 + 2 \cdot -5) & (1 \cdot -5 + 2 \cdot 1) \\ (2 \cdot 0 + 0 \cdot -5) & (2 \cdot -5 + 0 \cdot 1) \end{array} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Paso 3: Comparación
Comparando los resultados de [tex]\( AB \)[/tex] y [tex]\( B^{\top} A^{\top} \)[/tex]:
[tex]\[ AB = \begin{array}{cc} -10 & 0 \\ -3 & -10 \end{array} \][/tex]
[tex]\[ B^{\top} A^{\top} = \begin{array}{cc} -10 & -3 \\ 0 & -10 \end{array} \][/tex]
Los dos no son iguales, por lo que [tex]\( AB \)[/tex] no es simétrica.
### Resumen
- En la parte (a), [tex]\( AB \)[/tex] resultó simétrica.
- En la parte (b), [tex]\( AB \)[/tex] no resultó simétrica.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.