At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the equation of a line that is perpendicular to the line [tex]\( y = 3x - 4 \)[/tex] and passes through the point [tex]\((2, 1)\)[/tex], follow these steps:
1. Determine the slope of the given line: The given line is [tex]\( y = 3x -4 \)[/tex]. The slope of this line (denoted [tex]\( m \)[/tex]) is the coefficient of [tex]\( x \)[/tex], which is [tex]\( 3 \)[/tex].
2. Find the slope of the perpendicular line: The slope of a line perpendicular to another is the negative reciprocal of the slope of the given line.
- The negative reciprocal of [tex]\( 3 \)[/tex] is [tex]\( -\frac{1}{3} \)[/tex].
3. Use the point-slope form of the equation of a line: The point-slope form is given by
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, [tex]\((x_1, y_1) = (2, 1)\)[/tex] and [tex]\( m = -\frac{1}{3} \)[/tex].
- Substitute these values into the point-slope form:
[tex]\[ y - 1 = -\frac{1}{3}(x - 2) \][/tex]
4. Simplify the equation: Convert the point-slope form to slope-intercept form ([tex]\( y = mx + b \)[/tex]).
- Distribute the slope [tex]\( -\frac{1}{3} \)[/tex] on the right side:
[tex]\[ y - 1 = -\frac{1}{3}x + \frac{2}{3} \][/tex]
- Add [tex]\( 1 \)[/tex] to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{3}x + \frac{2}{3} + 1 \][/tex]
- Convert [tex]\( 1 \)[/tex] to a fraction with denominator 3:
[tex]\[ y = -\frac{1}{3}x + \frac{2}{3} + \frac{3}{3} \][/tex]
- Combine the fractions:
[tex]\[ y = -\frac{1}{3}x + \frac{5}{3} \][/tex]
Therefore, the equation of the line that passes through the point [tex]\((2, 1)\)[/tex] and is perpendicular to the line [tex]\( y = 3x - 4 \)[/tex] is
[tex]\[ y = -\frac{1}{3}x + \frac{5}{3}. \][/tex]
Thus, the correct answer is:
A. [tex]\( y = -\frac{1}{3}x + \frac{5}{3} \)[/tex]
1. Determine the slope of the given line: The given line is [tex]\( y = 3x -4 \)[/tex]. The slope of this line (denoted [tex]\( m \)[/tex]) is the coefficient of [tex]\( x \)[/tex], which is [tex]\( 3 \)[/tex].
2. Find the slope of the perpendicular line: The slope of a line perpendicular to another is the negative reciprocal of the slope of the given line.
- The negative reciprocal of [tex]\( 3 \)[/tex] is [tex]\( -\frac{1}{3} \)[/tex].
3. Use the point-slope form of the equation of a line: The point-slope form is given by
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, [tex]\((x_1, y_1) = (2, 1)\)[/tex] and [tex]\( m = -\frac{1}{3} \)[/tex].
- Substitute these values into the point-slope form:
[tex]\[ y - 1 = -\frac{1}{3}(x - 2) \][/tex]
4. Simplify the equation: Convert the point-slope form to slope-intercept form ([tex]\( y = mx + b \)[/tex]).
- Distribute the slope [tex]\( -\frac{1}{3} \)[/tex] on the right side:
[tex]\[ y - 1 = -\frac{1}{3}x + \frac{2}{3} \][/tex]
- Add [tex]\( 1 \)[/tex] to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{3}x + \frac{2}{3} + 1 \][/tex]
- Convert [tex]\( 1 \)[/tex] to a fraction with denominator 3:
[tex]\[ y = -\frac{1}{3}x + \frac{2}{3} + \frac{3}{3} \][/tex]
- Combine the fractions:
[tex]\[ y = -\frac{1}{3}x + \frac{5}{3} \][/tex]
Therefore, the equation of the line that passes through the point [tex]\((2, 1)\)[/tex] and is perpendicular to the line [tex]\( y = 3x - 4 \)[/tex] is
[tex]\[ y = -\frac{1}{3}x + \frac{5}{3}. \][/tex]
Thus, the correct answer is:
A. [tex]\( y = -\frac{1}{3}x + \frac{5}{3} \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.