Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the calculation step by step and find the correct labeling for the given equation, finding the number of bacteria in the food in [tex]$h$[/tex] hours.
We have two functions:
1. The number of bacteria in terms of temperature [tex]\( t \)[/tex]:
[tex]\[ b(t) = 15t^2 - 60t + 125 \][/tex]
2. The temperature in terms of hours [tex]\( h \)[/tex]:
[tex]\[ t(h) = 3h + 4 \][/tex]
Firstly, we are going to substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex] to find [tex]\( b(t(h)) \)[/tex].
Given:
[tex]\[ t(h) = 3h + 4 \][/tex]
We substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex]:
[tex]\[ b(t(h)) = b(3h + 4) \][/tex]
Now, we substitute [tex]\( 3h + 4 \)[/tex] into the equation for bacteria:
[tex]\[ b(3h + 4) = 15(3h + 4)^2 - 60(3h + 4) + 125 \][/tex]
Next, expand and simplify the expression:
[tex]\[ (3h + 4)^2 = (3h)^2 + 2 \cdot 3h \cdot 4 + 4^2 = 9h^2 + 24h + 16 \][/tex]
Substitute this back into the bacterial function:
[tex]\[ b(3h + 4) = 15(9h^2 + 24h + 16) - 60(3h + 4) + 125 \][/tex]
Distribute the 15 and simplify:
[tex]\[ = 135h^2 + 360h + 240 - 180h - 240 + 125 \][/tex]
Combine like terms:
[tex]\[ = 135h^2 + 180h + 125 \][/tex]
Therefore, the function for the number of bacteria in [tex]\( h \)[/tex] hours is:
[tex]\[ b(t(h)) = 135h^2 + 180h + 125 \][/tex]
Using the labels provided, we can fill in the equation accordingly:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
[tex]$b \circ t(h)$[/tex] & [tex]$=$[/tex] & 135 & [tex]$h^2$[/tex] & + & 180 & [tex]$h$[/tex] & + 125 \\
\hline
\end{tabular}
We have two functions:
1. The number of bacteria in terms of temperature [tex]\( t \)[/tex]:
[tex]\[ b(t) = 15t^2 - 60t + 125 \][/tex]
2. The temperature in terms of hours [tex]\( h \)[/tex]:
[tex]\[ t(h) = 3h + 4 \][/tex]
Firstly, we are going to substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex] to find [tex]\( b(t(h)) \)[/tex].
Given:
[tex]\[ t(h) = 3h + 4 \][/tex]
We substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex]:
[tex]\[ b(t(h)) = b(3h + 4) \][/tex]
Now, we substitute [tex]\( 3h + 4 \)[/tex] into the equation for bacteria:
[tex]\[ b(3h + 4) = 15(3h + 4)^2 - 60(3h + 4) + 125 \][/tex]
Next, expand and simplify the expression:
[tex]\[ (3h + 4)^2 = (3h)^2 + 2 \cdot 3h \cdot 4 + 4^2 = 9h^2 + 24h + 16 \][/tex]
Substitute this back into the bacterial function:
[tex]\[ b(3h + 4) = 15(9h^2 + 24h + 16) - 60(3h + 4) + 125 \][/tex]
Distribute the 15 and simplify:
[tex]\[ = 135h^2 + 360h + 240 - 180h - 240 + 125 \][/tex]
Combine like terms:
[tex]\[ = 135h^2 + 180h + 125 \][/tex]
Therefore, the function for the number of bacteria in [tex]\( h \)[/tex] hours is:
[tex]\[ b(t(h)) = 135h^2 + 180h + 125 \][/tex]
Using the labels provided, we can fill in the equation accordingly:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
[tex]$b \circ t(h)$[/tex] & [tex]$=$[/tex] & 135 & [tex]$h^2$[/tex] & + & 180 & [tex]$h$[/tex] & + 125 \\
\hline
\end{tabular}
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.