Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's break down the calculation step by step and find the correct labeling for the given equation, finding the number of bacteria in the food in [tex]$h$[/tex] hours.
We have two functions:
1. The number of bacteria in terms of temperature [tex]\( t \)[/tex]:
[tex]\[ b(t) = 15t^2 - 60t + 125 \][/tex]
2. The temperature in terms of hours [tex]\( h \)[/tex]:
[tex]\[ t(h) = 3h + 4 \][/tex]
Firstly, we are going to substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex] to find [tex]\( b(t(h)) \)[/tex].
Given:
[tex]\[ t(h) = 3h + 4 \][/tex]
We substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex]:
[tex]\[ b(t(h)) = b(3h + 4) \][/tex]
Now, we substitute [tex]\( 3h + 4 \)[/tex] into the equation for bacteria:
[tex]\[ b(3h + 4) = 15(3h + 4)^2 - 60(3h + 4) + 125 \][/tex]
Next, expand and simplify the expression:
[tex]\[ (3h + 4)^2 = (3h)^2 + 2 \cdot 3h \cdot 4 + 4^2 = 9h^2 + 24h + 16 \][/tex]
Substitute this back into the bacterial function:
[tex]\[ b(3h + 4) = 15(9h^2 + 24h + 16) - 60(3h + 4) + 125 \][/tex]
Distribute the 15 and simplify:
[tex]\[ = 135h^2 + 360h + 240 - 180h - 240 + 125 \][/tex]
Combine like terms:
[tex]\[ = 135h^2 + 180h + 125 \][/tex]
Therefore, the function for the number of bacteria in [tex]\( h \)[/tex] hours is:
[tex]\[ b(t(h)) = 135h^2 + 180h + 125 \][/tex]
Using the labels provided, we can fill in the equation accordingly:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
[tex]$b \circ t(h)$[/tex] & [tex]$=$[/tex] & 135 & [tex]$h^2$[/tex] & + & 180 & [tex]$h$[/tex] & + 125 \\
\hline
\end{tabular}
We have two functions:
1. The number of bacteria in terms of temperature [tex]\( t \)[/tex]:
[tex]\[ b(t) = 15t^2 - 60t + 125 \][/tex]
2. The temperature in terms of hours [tex]\( h \)[/tex]:
[tex]\[ t(h) = 3h + 4 \][/tex]
Firstly, we are going to substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex] to find [tex]\( b(t(h)) \)[/tex].
Given:
[tex]\[ t(h) = 3h + 4 \][/tex]
We substitute [tex]\( t(h) \)[/tex] into [tex]\( b(t) \)[/tex]:
[tex]\[ b(t(h)) = b(3h + 4) \][/tex]
Now, we substitute [tex]\( 3h + 4 \)[/tex] into the equation for bacteria:
[tex]\[ b(3h + 4) = 15(3h + 4)^2 - 60(3h + 4) + 125 \][/tex]
Next, expand and simplify the expression:
[tex]\[ (3h + 4)^2 = (3h)^2 + 2 \cdot 3h \cdot 4 + 4^2 = 9h^2 + 24h + 16 \][/tex]
Substitute this back into the bacterial function:
[tex]\[ b(3h + 4) = 15(9h^2 + 24h + 16) - 60(3h + 4) + 125 \][/tex]
Distribute the 15 and simplify:
[tex]\[ = 135h^2 + 360h + 240 - 180h - 240 + 125 \][/tex]
Combine like terms:
[tex]\[ = 135h^2 + 180h + 125 \][/tex]
Therefore, the function for the number of bacteria in [tex]\( h \)[/tex] hours is:
[tex]\[ b(t(h)) = 135h^2 + 180h + 125 \][/tex]
Using the labels provided, we can fill in the equation accordingly:
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline
[tex]$b \circ t(h)$[/tex] & [tex]$=$[/tex] & 135 & [tex]$h^2$[/tex] & + & 180 & [tex]$h$[/tex] & + 125 \\
\hline
\end{tabular}
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.