Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Line [tex]\( p \)[/tex] represents the function [tex]\( f(x) = 3x - 5 \)[/tex]. Line [tex]\(\square\)[/tex] represents [tex]\( f^{-1}(x) \)[/tex].

Sagot :

To find the inverse function [tex]\( f^{-1}(x) \)[/tex] for the given function [tex]\( f(x) = 3x - 5 \)[/tex], follow these steps carefully:

1. Start with the function:
[tex]\[ f(x) = 3x - 5 \][/tex]

2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex] to make manipulation easier:
[tex]\[ y = 3x - 5 \][/tex]

3. Switch [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. This represents the fundamental operation of finding the inverse, where the roles of the dependent and independent variables are interchanged:
[tex]\[ x = 3y - 5 \][/tex]

4. Solve for [tex]\( y \)[/tex] to find the expression for the inverse function:
[tex]\[ x = 3y - 5 \][/tex]

First, isolate the term involving [tex]\( y \)[/tex]:
[tex]\[ x + 5 = 3y \][/tex]

Then, solve for [tex]\( y \)[/tex] by dividing both sides by 3:
[tex]\[ y = \frac{x + 5}{3} \][/tex]

5. Write the inverse function:
[tex]\[ f^{-1}(x) = \frac{x + 5}{3} \][/tex]

So, the inverse function [tex]\( f^{-1}(x) \)[/tex] of the given function [tex]\( f(x) = 3x - 5 \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{x}{3} + \frac{5}{3} \][/tex]

Therefore, the line [tex]\( \square \)[/tex] that represents [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{x}{3} + \frac{5}{3} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.