Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the equation of the line passing through the points [tex]\((5,2)\)[/tex], [tex]\((10,4)\)[/tex], and [tex]\((15,6)\)[/tex], we need to follow a few steps carefully:
1. Calculate the Slope (m):
The slope of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points [tex]\((5,2)\)[/tex] and [tex]\((10,4)\)[/tex]:
[tex]\[ m = \frac{4 - 2}{10 - 5} = \frac{2}{5} \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\( 0.4 \)[/tex].
2. Determine the Y-intercept (b):
Once we have the slope, we use the line equation in the slope-intercept form:
[tex]\[ y = mx + b \][/tex]
We can substitute one of the points and the slope to find [tex]\( b \)[/tex]. Using the point [tex]\((5, 2)\)[/tex] and [tex]\( m = 0.4 \)[/tex]:
[tex]\[ 2 = 0.4 \cdot 5 + b \][/tex]
[tex]\[ 2 = 2 + b \][/tex]
[tex]\[ b = 0 \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is [tex]\( 0 \)[/tex].
3. Formulate the Line Equation:
With [tex]\( m = 0.4 \)[/tex] and [tex]\( b = 0 \)[/tex], the equation of the line is:
[tex]\[ y = 0.4x \][/tex]
Thus, the correct equation of the line that passes through the points [tex]\((5, 2)\)[/tex], [tex]\((10, 4)\)[/tex], and [tex]\((15, 6)\)[/tex] is:
[tex]\[ y = \frac{2}{5} x \][/tex]
Therefore, the correct option is:
A. [tex]\( y = \frac{2}{5} x \)[/tex]
1. Calculate the Slope (m):
The slope of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points [tex]\((5,2)\)[/tex] and [tex]\((10,4)\)[/tex]:
[tex]\[ m = \frac{4 - 2}{10 - 5} = \frac{2}{5} \][/tex]
Thus, the slope [tex]\( m \)[/tex] is [tex]\( 0.4 \)[/tex].
2. Determine the Y-intercept (b):
Once we have the slope, we use the line equation in the slope-intercept form:
[tex]\[ y = mx + b \][/tex]
We can substitute one of the points and the slope to find [tex]\( b \)[/tex]. Using the point [tex]\((5, 2)\)[/tex] and [tex]\( m = 0.4 \)[/tex]:
[tex]\[ 2 = 0.4 \cdot 5 + b \][/tex]
[tex]\[ 2 = 2 + b \][/tex]
[tex]\[ b = 0 \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is [tex]\( 0 \)[/tex].
3. Formulate the Line Equation:
With [tex]\( m = 0.4 \)[/tex] and [tex]\( b = 0 \)[/tex], the equation of the line is:
[tex]\[ y = 0.4x \][/tex]
Thus, the correct equation of the line that passes through the points [tex]\((5, 2)\)[/tex], [tex]\((10, 4)\)[/tex], and [tex]\((15, 6)\)[/tex] is:
[tex]\[ y = \frac{2}{5} x \][/tex]
Therefore, the correct option is:
A. [tex]\( y = \frac{2}{5} x \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.