Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the model for the population of frogs in the pond over time, we need to use the exponential growth formula since the population increases at a constant annual rate.
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.