Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the model for the population of frogs in the pond over time, we need to use the exponential growth formula since the population increases at a constant annual rate.
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.