Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the model for the population of frogs in the pond over time, we need to use the exponential growth formula since the population increases at a constant annual rate.
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.