Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the model for the population of frogs in the pond over time, we need to use the exponential growth formula since the population increases at a constant annual rate.
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
The general formula for exponential growth is:
[tex]\[ P_t = P_0 \cdot e^{rt} \][/tex]
where:
- [tex]\( P_t \)[/tex] is the population at time [tex]\( t \)[/tex],
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( r \)[/tex] is the growth rate (as a decimal), and
- [tex]\( t \)[/tex] is the time in years.
Given:
- An initial population [tex]\( P_0 \)[/tex] of 100 frogs,
- An annual growth rate [tex]\( r \)[/tex] of 22%, which needs to be converted to a decimal, so [tex]\( r = 0.22 \)[/tex].
Substituting these values into the exponential growth formula provides:
[tex]\[ P_t = 100 \cdot e^{0.22t} \][/tex]
Now, we compare this to the options provided:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
B. [tex]\( P_t = 100 e^{\frac{9 n}{1}} \)[/tex]
C. [tex]\( P_t = 100 e^{\frac{-2 x}{t}} \)[/tex]
D. [tex]\( P_t = 100 e^{-0.22 t} \)[/tex]
The correct equation that matches our derived model is option:
A. [tex]\( P_t = 100 e^{0.22 t} \)[/tex]
So, the answer is:
1. A
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.