Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given that [tex]\(\triangle RST \sim \triangle RYX\)[/tex] by the SSS (Side-Side-Side) similarity theorem, let's determine which ratio among the given options is also equal to the ratios [tex]\(\frac{RT}{RX}\)[/tex] and [tex]\(\frac{RS}{RY}\)[/tex].
When two triangles are similar, their corresponding sides are proportional. This means that the ratios of the lengths of corresponding sides of the triangles are equal.
From the given information, we know:
[tex]\[ \frac{RT}{RX} = \frac{RS}{RY} \][/tex]
We need to identify which of the given ratios is equivalent to these.
Let's examine the given options:
1. [tex]\(\frac{XY}{TS}\)[/tex]
2. [tex]\(\frac{SY}{RY}\)[/tex]
3. [tex]\(\frac{RX}{XT}\)[/tex]
4. [tex]\(\frac{ST}{rx}\)[/tex] (assuming [tex]\(rx\)[/tex] is meant to be [tex]\(RX\)[/tex])
Since [tex]\(\triangle RST \sim \triangle RYX\)[/tex], the sides of [tex]\(\triangle RST\)[/tex] (i.e., [tex]\(RT, RS, ST\)[/tex]) correspond proportionally to the sides of [tex]\(\triangle RYX\)[/tex] (i.e., [tex]\(RX, RY, XY\)[/tex]).
Among the given options:
1. [tex]\(\frac{XY}{TS}\)[/tex]: [tex]\(XY\)[/tex] in [tex]\(\triangle RYX\)[/tex] corresponds to [tex]\(TS\)[/tex] in [tex]\(\triangle RST\)[/tex]. However, this ratio does not fit the corresponding proportional sides directly as expressed by [tex]\(\frac{RT}{RX}\)[/tex] or [tex]\(\frac{RS}{RY}\)[/tex].
2. [tex]\(\frac{SY}{RY}\)[/tex]: This ratio is not expressing a correspondence of sides from [tex]\(\triangle RST\)[/tex] to [tex]\(\triangle RYX\)[/tex], and does not fit our requirement.
3. [tex]\(\frac{RX}{XT}\)[/tex]: This maintains the proportional relationship of corresponding sides since [tex]\(RX\)[/tex] is a side in [tex]\(\triangle RYX\)[/tex] and [tex]\(XT\)[/tex] can be viewed proportional to [tex]\(RT\)[/tex] but not directly corresponding here; thus, it fits the similarity criteria.
4. [tex]\(\frac{ST}{rx}\)[/tex]: Interpreting [tex]\(rx\)[/tex] as [tex]\(RX\)[/tex], this ratio is [tex]\(\frac{ST}{RX}\)[/tex], aligning with corresponding side relationships; however, it's more indirect than direct correspondence ratios.
From these options, [tex]\(\frac{RX}{XT}\)[/tex] stands out as aligned with maintaining triangle side proportionality. Hence, maintaining the proportional relationship:
[tex]\[ \boxed{\frac{RX}{XT}} \][/tex]
When two triangles are similar, their corresponding sides are proportional. This means that the ratios of the lengths of corresponding sides of the triangles are equal.
From the given information, we know:
[tex]\[ \frac{RT}{RX} = \frac{RS}{RY} \][/tex]
We need to identify which of the given ratios is equivalent to these.
Let's examine the given options:
1. [tex]\(\frac{XY}{TS}\)[/tex]
2. [tex]\(\frac{SY}{RY}\)[/tex]
3. [tex]\(\frac{RX}{XT}\)[/tex]
4. [tex]\(\frac{ST}{rx}\)[/tex] (assuming [tex]\(rx\)[/tex] is meant to be [tex]\(RX\)[/tex])
Since [tex]\(\triangle RST \sim \triangle RYX\)[/tex], the sides of [tex]\(\triangle RST\)[/tex] (i.e., [tex]\(RT, RS, ST\)[/tex]) correspond proportionally to the sides of [tex]\(\triangle RYX\)[/tex] (i.e., [tex]\(RX, RY, XY\)[/tex]).
Among the given options:
1. [tex]\(\frac{XY}{TS}\)[/tex]: [tex]\(XY\)[/tex] in [tex]\(\triangle RYX\)[/tex] corresponds to [tex]\(TS\)[/tex] in [tex]\(\triangle RST\)[/tex]. However, this ratio does not fit the corresponding proportional sides directly as expressed by [tex]\(\frac{RT}{RX}\)[/tex] or [tex]\(\frac{RS}{RY}\)[/tex].
2. [tex]\(\frac{SY}{RY}\)[/tex]: This ratio is not expressing a correspondence of sides from [tex]\(\triangle RST\)[/tex] to [tex]\(\triangle RYX\)[/tex], and does not fit our requirement.
3. [tex]\(\frac{RX}{XT}\)[/tex]: This maintains the proportional relationship of corresponding sides since [tex]\(RX\)[/tex] is a side in [tex]\(\triangle RYX\)[/tex] and [tex]\(XT\)[/tex] can be viewed proportional to [tex]\(RT\)[/tex] but not directly corresponding here; thus, it fits the similarity criteria.
4. [tex]\(\frac{ST}{rx}\)[/tex]: Interpreting [tex]\(rx\)[/tex] as [tex]\(RX\)[/tex], this ratio is [tex]\(\frac{ST}{RX}\)[/tex], aligning with corresponding side relationships; however, it's more indirect than direct correspondence ratios.
From these options, [tex]\(\frac{RX}{XT}\)[/tex] stands out as aligned with maintaining triangle side proportionality. Hence, maintaining the proportional relationship:
[tex]\[ \boxed{\frac{RX}{XT}} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.