Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To simplify the expression [tex]\( \left(4 \times 10^6\right) \cdot 10^{-3} \)[/tex], follow these steps:
1. Understand the problem: We need to multiply the number [tex]\( 4 \times 10^6 \)[/tex] by [tex]\( 10^{-3} \)[/tex].
2. Multiply the coefficients: The base numbers (coefficients) can be multiplied directly. Here, the coefficient is 4.
3. Add the exponents: When multiplying numbers in scientific notation, add the exponents of the base 10 terms. Specifically, [tex]\(10^6\)[/tex] and [tex]\(10^{-3}\)[/tex]:
[tex]\[ 10^6 \times 10^{-3} = 10^{6 + (-3)} = 10^{3} \][/tex]
4. Combine the results: Now combine the coefficient with the simplified base 10 term:
[tex]\[ 4 \times 10^6 \cdot 10^{-3} = 4 \times 10^3 \][/tex]
5. Express in scientific notation: The result can be directly written in scientific notation as:
[tex]\[ 4.0 \times 10^3 \][/tex]
6. Verify and match the answer with provided options:
- A. [tex]\(4 \times 10^{-18}\)[/tex]
- B. [tex]\(4 \times 10^3\)[/tex]
- C. 4,000
- D. [tex]\(4 \times 10^9\)[/tex]
Since [tex]\(4.0 \times 10^3\)[/tex] is the same as [tex]\(4 \times 10^3\)[/tex], the correct option is:
[tex]\[ \boxed{B} \][/tex]
Option B is the correct answer. Thus, [tex]\( \left(4 \times 10^6\right) \cdot 10^{-3} \)[/tex] simplifies to [tex]\( 4 \times 10^3 \)[/tex].
1. Understand the problem: We need to multiply the number [tex]\( 4 \times 10^6 \)[/tex] by [tex]\( 10^{-3} \)[/tex].
2. Multiply the coefficients: The base numbers (coefficients) can be multiplied directly. Here, the coefficient is 4.
3. Add the exponents: When multiplying numbers in scientific notation, add the exponents of the base 10 terms. Specifically, [tex]\(10^6\)[/tex] and [tex]\(10^{-3}\)[/tex]:
[tex]\[ 10^6 \times 10^{-3} = 10^{6 + (-3)} = 10^{3} \][/tex]
4. Combine the results: Now combine the coefficient with the simplified base 10 term:
[tex]\[ 4 \times 10^6 \cdot 10^{-3} = 4 \times 10^3 \][/tex]
5. Express in scientific notation: The result can be directly written in scientific notation as:
[tex]\[ 4.0 \times 10^3 \][/tex]
6. Verify and match the answer with provided options:
- A. [tex]\(4 \times 10^{-18}\)[/tex]
- B. [tex]\(4 \times 10^3\)[/tex]
- C. 4,000
- D. [tex]\(4 \times 10^9\)[/tex]
Since [tex]\(4.0 \times 10^3\)[/tex] is the same as [tex]\(4 \times 10^3\)[/tex], the correct option is:
[tex]\[ \boxed{B} \][/tex]
Option B is the correct answer. Thus, [tex]\( \left(4 \times 10^6\right) \cdot 10^{-3} \)[/tex] simplifies to [tex]\( 4 \times 10^3 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.