Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the resistance of a copper coil at [tex]\( 50^{\circ} \text{C} \)[/tex], given that its resistance at [tex]\( 0^{\circ} \text{C} \)[/tex] is [tex]\( 3.35 \Omega \)[/tex] and the temperature coefficient of resistance for copper, [tex]\(\alpha = 4.3 \times 10^{-3} \, ^\circ\text{C}^{-1}\)[/tex], we can use the following formula:
[tex]\[ R_t = R_0 (1 + \alpha \Delta T) \][/tex]
Where:
- [tex]\( R_t \)[/tex] is the resistance at the final temperature (which we need to find).
- [tex]\( R_0 \)[/tex] is the resistance at the initial temperature ([tex]\(0^\circ \text{C}\)[/tex]).
- [tex]\(\alpha\)[/tex] is the temperature coefficient of resistance.
- [tex]\(\Delta T\)[/tex] is the change in temperature ([tex]\( T_{\text{final}} - T_{\text{initial}} \)[/tex]).
### Step-by-Step Solution:
1. Given Values:
- Initial resistance, [tex]\( R_0 = 3.35 \Omega \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 0^\circ \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 50^\circ \text{C} \)[/tex]
- Temperature coefficient of resistance for copper, [tex]\(\alpha = 4.3 \times 10^{-3} \, ^\circ\text{C}^{-1}\)[/tex]
2. Calculate the Change in Temperature:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 50^\circ \text{C} - 0^\circ \text{C} = 50^\circ \text{C} \][/tex]
3. Substitute the values into the resistance formula:
[tex]\[ R_t = 3.35 \Omega \times (1 + 4.3 \times 10^{-3} \times 50) \][/tex]
4. Perform the multiplication and addition inside the parenthesis first:
[tex]\[ 1 + 4.3 \times 10^{-3} \times 50 = 1 + 0.215 = 1.215 \][/tex]
5. Now multiply the initial resistance by this factor:
[tex]\[ R_t = 3.35 \Omega \times 1.215 \][/tex]
6. Calculate the final result:
[tex]\[ R_t = 4.07025 \Omega \][/tex]
Thus, the resistance of the copper coil at [tex]\( 50^\circ \text{C} \)[/tex] is approximately [tex]\( 4.07025 \Omega \)[/tex].
[tex]\[ R_t = R_0 (1 + \alpha \Delta T) \][/tex]
Where:
- [tex]\( R_t \)[/tex] is the resistance at the final temperature (which we need to find).
- [tex]\( R_0 \)[/tex] is the resistance at the initial temperature ([tex]\(0^\circ \text{C}\)[/tex]).
- [tex]\(\alpha\)[/tex] is the temperature coefficient of resistance.
- [tex]\(\Delta T\)[/tex] is the change in temperature ([tex]\( T_{\text{final}} - T_{\text{initial}} \)[/tex]).
### Step-by-Step Solution:
1. Given Values:
- Initial resistance, [tex]\( R_0 = 3.35 \Omega \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 0^\circ \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 50^\circ \text{C} \)[/tex]
- Temperature coefficient of resistance for copper, [tex]\(\alpha = 4.3 \times 10^{-3} \, ^\circ\text{C}^{-1}\)[/tex]
2. Calculate the Change in Temperature:
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 50^\circ \text{C} - 0^\circ \text{C} = 50^\circ \text{C} \][/tex]
3. Substitute the values into the resistance formula:
[tex]\[ R_t = 3.35 \Omega \times (1 + 4.3 \times 10^{-3} \times 50) \][/tex]
4. Perform the multiplication and addition inside the parenthesis first:
[tex]\[ 1 + 4.3 \times 10^{-3} \times 50 = 1 + 0.215 = 1.215 \][/tex]
5. Now multiply the initial resistance by this factor:
[tex]\[ R_t = 3.35 \Omega \times 1.215 \][/tex]
6. Calculate the final result:
[tex]\[ R_t = 4.07025 \Omega \][/tex]
Thus, the resistance of the copper coil at [tex]\( 50^\circ \text{C} \)[/tex] is approximately [tex]\( 4.07025 \Omega \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.