Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To construct a binomial distribution for the given problem, we need to determine the probability of each possible outcome for [tex]\( x \)[/tex], where [tex]\( x \)[/tex] is the number of adults out of five who want to live to age 100.
Given data:
- [tex]\( n = 5 \)[/tex] (number of trials, i.e., number of adults selected)
- [tex]\( p = 0.72 \)[/tex] (probability of success, i.e., the probability that an adult wants to live to age 100)
The binomial probability mass function (pmf) is given by:
[tex]\[ P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \][/tex]
Here, we are given the probabilities for each possible value of [tex]\( x \)[/tex], where [tex]\( x \)[/tex] ranges from 0 to 5. Let's fill in the table with these values.
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $P(x)$ \\ \hline 0 & 0.00172 \\ \hline 1 & 0.02213 \\ \hline 2 & 0.11380 \\ \hline 3 & 0.29263 \\ \hline 4 & 0.37623 \\ \hline 5 & 0.19349 \\ \hline \end{tabular} \][/tex]
Each value of [tex]\( P(x) \)[/tex] needs to be rounded to five decimal places, and the values given already satisfy this requirement.
Hence, the completed binomial distribution table is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $P(x)$ \\ \hline 0 & 0.00172 \\ \hline 1 & 0.02213 \\ \hline 2 & 0.11380 \\ \hline 3 & 0.29263 \\ \hline 4 & 0.37623 \\ \hline 5 & 0.19349 \\ \hline \end{tabular} \][/tex]
Given data:
- [tex]\( n = 5 \)[/tex] (number of trials, i.e., number of adults selected)
- [tex]\( p = 0.72 \)[/tex] (probability of success, i.e., the probability that an adult wants to live to age 100)
The binomial probability mass function (pmf) is given by:
[tex]\[ P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \][/tex]
Here, we are given the probabilities for each possible value of [tex]\( x \)[/tex], where [tex]\( x \)[/tex] ranges from 0 to 5. Let's fill in the table with these values.
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $P(x)$ \\ \hline 0 & 0.00172 \\ \hline 1 & 0.02213 \\ \hline 2 & 0.11380 \\ \hline 3 & 0.29263 \\ \hline 4 & 0.37623 \\ \hline 5 & 0.19349 \\ \hline \end{tabular} \][/tex]
Each value of [tex]\( P(x) \)[/tex] needs to be rounded to five decimal places, and the values given already satisfy this requirement.
Hence, the completed binomial distribution table is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $P(x)$ \\ \hline 0 & 0.00172 \\ \hline 1 & 0.02213 \\ \hline 2 & 0.11380 \\ \hline 3 & 0.29263 \\ \hline 4 & 0.37623 \\ \hline 5 & 0.19349 \\ \hline \end{tabular} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.