Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the problem step-by-step:
1. Identify the variables:
Let:
- [tex]\( x \)[/tex] be the number of 13 cent stamps.
- [tex]\( y \)[/tex] be the number of 18 cent stamps.
2. Set up the equations:
- The total number of stamps is 42:
[tex]\[ x + y = 42 \][/tex]
- The total cost of the stamps is [tex]$6.66. Convert dollars to cents since the stamp values are in cents. Hence, $[/tex]6.66 is equivalent to 666 cents:
[tex]\[ 0.13x + 0.18y = 6.66 \][/tex]
3. System of equations:
The system representing the problem is:
[tex]\[ \begin{cases} x + y = 42 \\ 0.13x + 0.18y = 6.66 \end{cases} \][/tex]
4. Solve the system:
We have two equations:
[tex]\[ \begin{cases} x + y = 42 \\ 0.13x + 0.18y = 6.66 \end{cases} \][/tex]
Let's solve these equations to find [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
5. Isolate one variable:
From the first equation, isolate [tex]\( y \)[/tex]:
[tex]\[ y = 42 - x \][/tex]
6. Substitute into the second equation:
Substitute [tex]\( y \)[/tex] into the second equation:
[tex]\[ 0.13x + 0.18(42 - x) = 6.66 \][/tex]
7. Simplify the second equation:
[tex]\[ 0.13x + 0.18 \cdot 42 - 0.18x = 6.66 \][/tex]
[tex]\[ 0.13x + 7.56 - 0.18x = 6.66 \][/tex]
[tex]\[ -0.05x + 7.56 = 6.66 \][/tex]
[tex]\[ -0.05x = 6.66 - 7.56 \][/tex]
[tex]\[ -0.05x = -0.90 \][/tex]
[tex]\[ x = \frac{-0.90}{-0.05} \][/tex]
[tex]\[ x = 18 \][/tex]
8. Find [tex]\( y \)[/tex]:
Substitute [tex]\( x = 18 \)[/tex] back into the equation [tex]\( y = 42 - x \)[/tex]:
[tex]\[ y = 42 - 18 \][/tex]
[tex]\[ y = 24 \][/tex]
So, the man bought:
- 18 of the 13 cent stamps.
- 24 of the 18 cent stamps.
Thus, the system representing the problem is:
[tex]\[ \begin{cases} x + y = 42 \\ 0.13x + 0.18y = 6.66 \end{cases}. \][/tex]
1. Identify the variables:
Let:
- [tex]\( x \)[/tex] be the number of 13 cent stamps.
- [tex]\( y \)[/tex] be the number of 18 cent stamps.
2. Set up the equations:
- The total number of stamps is 42:
[tex]\[ x + y = 42 \][/tex]
- The total cost of the stamps is [tex]$6.66. Convert dollars to cents since the stamp values are in cents. Hence, $[/tex]6.66 is equivalent to 666 cents:
[tex]\[ 0.13x + 0.18y = 6.66 \][/tex]
3. System of equations:
The system representing the problem is:
[tex]\[ \begin{cases} x + y = 42 \\ 0.13x + 0.18y = 6.66 \end{cases} \][/tex]
4. Solve the system:
We have two equations:
[tex]\[ \begin{cases} x + y = 42 \\ 0.13x + 0.18y = 6.66 \end{cases} \][/tex]
Let's solve these equations to find [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
5. Isolate one variable:
From the first equation, isolate [tex]\( y \)[/tex]:
[tex]\[ y = 42 - x \][/tex]
6. Substitute into the second equation:
Substitute [tex]\( y \)[/tex] into the second equation:
[tex]\[ 0.13x + 0.18(42 - x) = 6.66 \][/tex]
7. Simplify the second equation:
[tex]\[ 0.13x + 0.18 \cdot 42 - 0.18x = 6.66 \][/tex]
[tex]\[ 0.13x + 7.56 - 0.18x = 6.66 \][/tex]
[tex]\[ -0.05x + 7.56 = 6.66 \][/tex]
[tex]\[ -0.05x = 6.66 - 7.56 \][/tex]
[tex]\[ -0.05x = -0.90 \][/tex]
[tex]\[ x = \frac{-0.90}{-0.05} \][/tex]
[tex]\[ x = 18 \][/tex]
8. Find [tex]\( y \)[/tex]:
Substitute [tex]\( x = 18 \)[/tex] back into the equation [tex]\( y = 42 - x \)[/tex]:
[tex]\[ y = 42 - 18 \][/tex]
[tex]\[ y = 24 \][/tex]
So, the man bought:
- 18 of the 13 cent stamps.
- 24 of the 18 cent stamps.
Thus, the system representing the problem is:
[tex]\[ \begin{cases} x + y = 42 \\ 0.13x + 0.18y = 6.66 \end{cases}. \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.