Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the Cartesian coordinate system, we use the distance formula. Let's analyze the options provided:
1. Option A: [tex]\(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)[/tex]
This is the correct distance formula. It is derived from the Pythagorean theorem, where the horizontal difference [tex]\((x_2 - x_1)\)[/tex] and the vertical difference [tex]\((y_2 - y_1)\)[/tex] form a right triangle with the distance being the hypotenuse.
2. Option B: [tex]\(\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}\)[/tex]
This formula is incorrect because the subtraction inside the square root can lead to negative values, which aren't valid in measuring distance.
3. Option C: [tex]\(\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}\)[/tex]
This formula does not correctly represent the distance between two points. It combines the coordinates incorrectly.
4. Option D: [tex]\(\sqrt{(x_2 + x_1)^2 - (y_2 - y_1)^2}\)[/tex]
Similar to option B, this formula is incorrect because it can produce negative values inside the square root.
Therefore, the correct formula to circle is:
[tex]\[ \boxed{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \][/tex]
### Part II: Finding the Length of the Segment
Given two points for the endpoints of the segment, [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex]:
1. Identify the coordinates:
- [tex]\( (x_1, y_1) = (1, 2) \)[/tex]
- [tex]\( (x_2, y_2) = (4, 6) \)[/tex]
2. Substitute the coordinates into the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{(4 - 1)^2 + (6 - 2)^2} \][/tex]
3. Calculate the differences and their squares:
[tex]\[ (4 - 1)^2 = 3^2 = 9 \][/tex]
[tex]\[ (6 - 2)^2 = 4^2 = 16 \][/tex]
4. Add the squares of the differences:
[tex]\[ 9 + 16 = 25 \][/tex]
5. Take the square root of the sum:
[tex]\[ \text{Distance} = \sqrt{25} = 5 \][/tex]
Thus, the length of the segment with endpoints [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex] is:
[tex]\[ \boxed{5.0} \][/tex]
1. Option A: [tex]\(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)[/tex]
This is the correct distance formula. It is derived from the Pythagorean theorem, where the horizontal difference [tex]\((x_2 - x_1)\)[/tex] and the vertical difference [tex]\((y_2 - y_1)\)[/tex] form a right triangle with the distance being the hypotenuse.
2. Option B: [tex]\(\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}\)[/tex]
This formula is incorrect because the subtraction inside the square root can lead to negative values, which aren't valid in measuring distance.
3. Option C: [tex]\(\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}\)[/tex]
This formula does not correctly represent the distance between two points. It combines the coordinates incorrectly.
4. Option D: [tex]\(\sqrt{(x_2 + x_1)^2 - (y_2 - y_1)^2}\)[/tex]
Similar to option B, this formula is incorrect because it can produce negative values inside the square root.
Therefore, the correct formula to circle is:
[tex]\[ \boxed{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \][/tex]
### Part II: Finding the Length of the Segment
Given two points for the endpoints of the segment, [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex]:
1. Identify the coordinates:
- [tex]\( (x_1, y_1) = (1, 2) \)[/tex]
- [tex]\( (x_2, y_2) = (4, 6) \)[/tex]
2. Substitute the coordinates into the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{(4 - 1)^2 + (6 - 2)^2} \][/tex]
3. Calculate the differences and their squares:
[tex]\[ (4 - 1)^2 = 3^2 = 9 \][/tex]
[tex]\[ (6 - 2)^2 = 4^2 = 16 \][/tex]
4. Add the squares of the differences:
[tex]\[ 9 + 16 = 25 \][/tex]
5. Take the square root of the sum:
[tex]\[ \text{Distance} = \sqrt{25} = 5 \][/tex]
Thus, the length of the segment with endpoints [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex] is:
[tex]\[ \boxed{5.0} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.