At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the Cartesian coordinate system, we use the distance formula. Let's analyze the options provided:
1. Option A: [tex]\(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)[/tex]
This is the correct distance formula. It is derived from the Pythagorean theorem, where the horizontal difference [tex]\((x_2 - x_1)\)[/tex] and the vertical difference [tex]\((y_2 - y_1)\)[/tex] form a right triangle with the distance being the hypotenuse.
2. Option B: [tex]\(\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}\)[/tex]
This formula is incorrect because the subtraction inside the square root can lead to negative values, which aren't valid in measuring distance.
3. Option C: [tex]\(\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}\)[/tex]
This formula does not correctly represent the distance between two points. It combines the coordinates incorrectly.
4. Option D: [tex]\(\sqrt{(x_2 + x_1)^2 - (y_2 - y_1)^2}\)[/tex]
Similar to option B, this formula is incorrect because it can produce negative values inside the square root.
Therefore, the correct formula to circle is:
[tex]\[ \boxed{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \][/tex]
### Part II: Finding the Length of the Segment
Given two points for the endpoints of the segment, [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex]:
1. Identify the coordinates:
- [tex]\( (x_1, y_1) = (1, 2) \)[/tex]
- [tex]\( (x_2, y_2) = (4, 6) \)[/tex]
2. Substitute the coordinates into the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{(4 - 1)^2 + (6 - 2)^2} \][/tex]
3. Calculate the differences and their squares:
[tex]\[ (4 - 1)^2 = 3^2 = 9 \][/tex]
[tex]\[ (6 - 2)^2 = 4^2 = 16 \][/tex]
4. Add the squares of the differences:
[tex]\[ 9 + 16 = 25 \][/tex]
5. Take the square root of the sum:
[tex]\[ \text{Distance} = \sqrt{25} = 5 \][/tex]
Thus, the length of the segment with endpoints [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex] is:
[tex]\[ \boxed{5.0} \][/tex]
1. Option A: [tex]\(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)[/tex]
This is the correct distance formula. It is derived from the Pythagorean theorem, where the horizontal difference [tex]\((x_2 - x_1)\)[/tex] and the vertical difference [tex]\((y_2 - y_1)\)[/tex] form a right triangle with the distance being the hypotenuse.
2. Option B: [tex]\(\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}\)[/tex]
This formula is incorrect because the subtraction inside the square root can lead to negative values, which aren't valid in measuring distance.
3. Option C: [tex]\(\sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}\)[/tex]
This formula does not correctly represent the distance between two points. It combines the coordinates incorrectly.
4. Option D: [tex]\(\sqrt{(x_2 + x_1)^2 - (y_2 - y_1)^2}\)[/tex]
Similar to option B, this formula is incorrect because it can produce negative values inside the square root.
Therefore, the correct formula to circle is:
[tex]\[ \boxed{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \][/tex]
### Part II: Finding the Length of the Segment
Given two points for the endpoints of the segment, [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex]:
1. Identify the coordinates:
- [tex]\( (x_1, y_1) = (1, 2) \)[/tex]
- [tex]\( (x_2, y_2) = (4, 6) \)[/tex]
2. Substitute the coordinates into the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
[tex]\[ \text{Distance} = \sqrt{(4 - 1)^2 + (6 - 2)^2} \][/tex]
3. Calculate the differences and their squares:
[tex]\[ (4 - 1)^2 = 3^2 = 9 \][/tex]
[tex]\[ (6 - 2)^2 = 4^2 = 16 \][/tex]
4. Add the squares of the differences:
[tex]\[ 9 + 16 = 25 \][/tex]
5. Take the square root of the sum:
[tex]\[ \text{Distance} = \sqrt{25} = 5 \][/tex]
Thus, the length of the segment with endpoints [tex]\((1, 2)\)[/tex] and [tex]\((4, 6)\)[/tex] is:
[tex]\[ \boxed{5.0} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.