Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's walk through the steps to solve the problem of finding the correct value of [tex]\(a\)[/tex] in the polynomial [tex]\( p(x) = x^4 + 5x^3 + ax^2 - 3x + 11 \)[/tex], given that the remainder when [tex]\( p(x) \)[/tex] is divided by [tex]\( (x+1) \)[/tex] is 17.
### Braulio's Solution Using Synthetic Division
1. Setup for synthetic division: We are dividing by [tex]\( x + 1 \)[/tex], which corresponds to evaluating at [tex]\( x = -1 \)[/tex].
2. Coefficients of the polynomial: [tex]\( 1, 5, a, -3, 11 \)[/tex]
3. Perform synthetic division:
[tex]\[ \begin{array}{r|rrr} -1 & 1 & 5 & a & -3 & 11 \\ & & -1 & -4 & -a-3 & -a \end{array} \end{array} \][/tex]
- Bring down the 1.
- Multiply by -1 and add to the next coefficient: [tex]\( 5 + (-1) = 4 \)[/tex]
- Multiply by -1 and add to the next coefficient: [tex]\( a + 4 = -a-3 \)[/tex]
- Multiply by -1 and add to the next coefficient: [tex]\(-3 + (-(-a-3)) = -3 + a + 3 = a\)[/tex]
- Multiply by -1 and add to the next coefficient: [tex]\( 11 + (-a) = 11 - a \)[/tex]
4. Final value of the remainder: The last value, [tex]\( a + 14 \)[/tex], is set equal to 17.
5. Set up the equation:
[tex]\[ a + 14 = 17 \][/tex]
6. Solve for [tex]\(a\)[/tex]:
[tex]\[ a = 3 \][/tex]
### Zahra's Solution Using the Remainder Theorem
1. Remainder theorem: Evaluate the polynomial at [tex]\( x = -1 \)[/tex].
2. Setup the polynomial evaluation:
[tex]\[ p(-1) = (-1)^4 + 5(-1)^3 + a(-1)^2 - 3(-1) + 11 \][/tex]
3. Calculate each term:
[tex]\[ (-1)^4 = 1 \][/tex]
[tex]\[ 5(-1)^3 = -5 \][/tex]
[tex]\[ a(-1)^2 = a \][/tex]
[tex]\[ -3(-1) = 3 \][/tex]
[tex]\[ 11 = 11 \][/tex]
4. Sum up the terms:
[tex]\[ p(-1) = 1 - 5 + a + 3 + 11 = a + 10 \][/tex]
5. Set up the equation:
[tex]\[ a + 10 = 17 \][/tex]
6. Solve for [tex]\(a\)[/tex]:
[tex]\[ a = 7 \][/tex]
### Conclusion:
- Braulio found the correct value of [tex]\(a\)[/tex] because he obtained [tex]\( a = 3 \)[/tex], which matches the given answer.
- Zahra did not find the correct value of [tex]\(a\)[/tex] because she obtained [tex]\( a = 7 \)[/tex], which is incorrect.
Therefore, we can say:
- Braulio correctly found the value of [tex]\(a\)[/tex] because he used synthetic division accurately.
- Zahra incorrectly found the value of [tex]\(a\)[/tex] because she made an arithmetic error in her polynomial evaluation.
### Braulio's Solution Using Synthetic Division
1. Setup for synthetic division: We are dividing by [tex]\( x + 1 \)[/tex], which corresponds to evaluating at [tex]\( x = -1 \)[/tex].
2. Coefficients of the polynomial: [tex]\( 1, 5, a, -3, 11 \)[/tex]
3. Perform synthetic division:
[tex]\[ \begin{array}{r|rrr} -1 & 1 & 5 & a & -3 & 11 \\ & & -1 & -4 & -a-3 & -a \end{array} \end{array} \][/tex]
- Bring down the 1.
- Multiply by -1 and add to the next coefficient: [tex]\( 5 + (-1) = 4 \)[/tex]
- Multiply by -1 and add to the next coefficient: [tex]\( a + 4 = -a-3 \)[/tex]
- Multiply by -1 and add to the next coefficient: [tex]\(-3 + (-(-a-3)) = -3 + a + 3 = a\)[/tex]
- Multiply by -1 and add to the next coefficient: [tex]\( 11 + (-a) = 11 - a \)[/tex]
4. Final value of the remainder: The last value, [tex]\( a + 14 \)[/tex], is set equal to 17.
5. Set up the equation:
[tex]\[ a + 14 = 17 \][/tex]
6. Solve for [tex]\(a\)[/tex]:
[tex]\[ a = 3 \][/tex]
### Zahra's Solution Using the Remainder Theorem
1. Remainder theorem: Evaluate the polynomial at [tex]\( x = -1 \)[/tex].
2. Setup the polynomial evaluation:
[tex]\[ p(-1) = (-1)^4 + 5(-1)^3 + a(-1)^2 - 3(-1) + 11 \][/tex]
3. Calculate each term:
[tex]\[ (-1)^4 = 1 \][/tex]
[tex]\[ 5(-1)^3 = -5 \][/tex]
[tex]\[ a(-1)^2 = a \][/tex]
[tex]\[ -3(-1) = 3 \][/tex]
[tex]\[ 11 = 11 \][/tex]
4. Sum up the terms:
[tex]\[ p(-1) = 1 - 5 + a + 3 + 11 = a + 10 \][/tex]
5. Set up the equation:
[tex]\[ a + 10 = 17 \][/tex]
6. Solve for [tex]\(a\)[/tex]:
[tex]\[ a = 7 \][/tex]
### Conclusion:
- Braulio found the correct value of [tex]\(a\)[/tex] because he obtained [tex]\( a = 3 \)[/tex], which matches the given answer.
- Zahra did not find the correct value of [tex]\(a\)[/tex] because she obtained [tex]\( a = 7 \)[/tex], which is incorrect.
Therefore, we can say:
- Braulio correctly found the value of [tex]\(a\)[/tex] because he used synthetic division accurately.
- Zahra incorrectly found the value of [tex]\(a\)[/tex] because she made an arithmetic error in her polynomial evaluation.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.