Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
### Graphing the Function
To graph the logarithmic function [tex]\( f(x) \)[/tex] with the given points, you can plot the points [tex]\((x,y)\)[/tex] on a suitable coordinate plane. The given points are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline \frac{1}{125} & -3 \\ \hline \frac{1}{25} & -2 \\ \hline \frac{1}{5} & -1 \\ \hline 1 & 0 \\ \hline 5 & 1 \\ \hline 25 & 2 \\ \hline 125 & 3 \\ \hline \end{array} \][/tex]
When you plot these points, you will observe that they lie on a curve typical of a logarithmic function. The characteristic shape of a logarithmic function is such that it increases slowly for small values of [tex]\( x \)[/tex], passes through the point (1, 0), and increases more rapidly as [tex]\( x \)[/tex] grows larger.
### Steps to Plot the Points
1. Plot the points [tex]\((\frac{1}{125}, -3)\)[/tex], [tex]\((\frac{1}{25}, -2)\)[/tex], [tex]\((\frac{1}{5}, -1)\)[/tex], [tex]\((1, 0)\)[/tex], [tex]\((5, 1)\)[/tex], [tex]\((25, 2)\)[/tex], and [tex]\((125, 3)\)[/tex].
2. Use a smooth curve to connect these points, ensuring that the curve passes through each plotted point.
3. Label your axes. Typically, it is useful to label the x-axis with a logarithmic scale in this case for better visualization since x-values span a broad range from [tex]\(\frac{1}{125}\)[/tex] to [tex]\(125\)[/tex].
### Determining the Domain
The logarithmic function [tex]\( f(x) = \log_b(x) \)[/tex] (for any base [tex]\( b \)[/tex]) is only defined for [tex]\( x > 0 \)[/tex]. This is because you cannot take the logarithm of a non-positive number.
Thus, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ x \in (0, \infty) \][/tex]
### Determining the Range
For the given [tex]\( y \)[/tex]-values, we observe that they span from [tex]\(-3\)[/tex] to [tex]\(3\)[/tex]. However, logarithmic functions are not restricted to this specific interval; they can take any real number value given appropriate [tex]\( x \)[/tex]-values.
Therefore, for the general logarithmic function [tex]\( f(x) \)[/tex], the range is:
[tex]\[ y \in (-\infty, \infty) \][/tex]
### Conclusion
In summary:
- Domain of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
By recognizing the nature of logarithmic functions and examining the given data points, you can accurately graph [tex]\( f(x) \)[/tex] and determine its domain and range.
To graph the logarithmic function [tex]\( f(x) \)[/tex] with the given points, you can plot the points [tex]\((x,y)\)[/tex] on a suitable coordinate plane. The given points are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline \frac{1}{125} & -3 \\ \hline \frac{1}{25} & -2 \\ \hline \frac{1}{5} & -1 \\ \hline 1 & 0 \\ \hline 5 & 1 \\ \hline 25 & 2 \\ \hline 125 & 3 \\ \hline \end{array} \][/tex]
When you plot these points, you will observe that they lie on a curve typical of a logarithmic function. The characteristic shape of a logarithmic function is such that it increases slowly for small values of [tex]\( x \)[/tex], passes through the point (1, 0), and increases more rapidly as [tex]\( x \)[/tex] grows larger.
### Steps to Plot the Points
1. Plot the points [tex]\((\frac{1}{125}, -3)\)[/tex], [tex]\((\frac{1}{25}, -2)\)[/tex], [tex]\((\frac{1}{5}, -1)\)[/tex], [tex]\((1, 0)\)[/tex], [tex]\((5, 1)\)[/tex], [tex]\((25, 2)\)[/tex], and [tex]\((125, 3)\)[/tex].
2. Use a smooth curve to connect these points, ensuring that the curve passes through each plotted point.
3. Label your axes. Typically, it is useful to label the x-axis with a logarithmic scale in this case for better visualization since x-values span a broad range from [tex]\(\frac{1}{125}\)[/tex] to [tex]\(125\)[/tex].
### Determining the Domain
The logarithmic function [tex]\( f(x) = \log_b(x) \)[/tex] (for any base [tex]\( b \)[/tex]) is only defined for [tex]\( x > 0 \)[/tex]. This is because you cannot take the logarithm of a non-positive number.
Thus, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ x \in (0, \infty) \][/tex]
### Determining the Range
For the given [tex]\( y \)[/tex]-values, we observe that they span from [tex]\(-3\)[/tex] to [tex]\(3\)[/tex]. However, logarithmic functions are not restricted to this specific interval; they can take any real number value given appropriate [tex]\( x \)[/tex]-values.
Therefore, for the general logarithmic function [tex]\( f(x) \)[/tex], the range is:
[tex]\[ y \in (-\infty, \infty) \][/tex]
### Conclusion
In summary:
- Domain of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
By recognizing the nature of logarithmic functions and examining the given data points, you can accurately graph [tex]\( f(x) \)[/tex] and determine its domain and range.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.