Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
### Graphing the Function
To graph the logarithmic function [tex]\( f(x) \)[/tex] with the given points, you can plot the points [tex]\((x,y)\)[/tex] on a suitable coordinate plane. The given points are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline \frac{1}{125} & -3 \\ \hline \frac{1}{25} & -2 \\ \hline \frac{1}{5} & -1 \\ \hline 1 & 0 \\ \hline 5 & 1 \\ \hline 25 & 2 \\ \hline 125 & 3 \\ \hline \end{array} \][/tex]
When you plot these points, you will observe that they lie on a curve typical of a logarithmic function. The characteristic shape of a logarithmic function is such that it increases slowly for small values of [tex]\( x \)[/tex], passes through the point (1, 0), and increases more rapidly as [tex]\( x \)[/tex] grows larger.
### Steps to Plot the Points
1. Plot the points [tex]\((\frac{1}{125}, -3)\)[/tex], [tex]\((\frac{1}{25}, -2)\)[/tex], [tex]\((\frac{1}{5}, -1)\)[/tex], [tex]\((1, 0)\)[/tex], [tex]\((5, 1)\)[/tex], [tex]\((25, 2)\)[/tex], and [tex]\((125, 3)\)[/tex].
2. Use a smooth curve to connect these points, ensuring that the curve passes through each plotted point.
3. Label your axes. Typically, it is useful to label the x-axis with a logarithmic scale in this case for better visualization since x-values span a broad range from [tex]\(\frac{1}{125}\)[/tex] to [tex]\(125\)[/tex].
### Determining the Domain
The logarithmic function [tex]\( f(x) = \log_b(x) \)[/tex] (for any base [tex]\( b \)[/tex]) is only defined for [tex]\( x > 0 \)[/tex]. This is because you cannot take the logarithm of a non-positive number.
Thus, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ x \in (0, \infty) \][/tex]
### Determining the Range
For the given [tex]\( y \)[/tex]-values, we observe that they span from [tex]\(-3\)[/tex] to [tex]\(3\)[/tex]. However, logarithmic functions are not restricted to this specific interval; they can take any real number value given appropriate [tex]\( x \)[/tex]-values.
Therefore, for the general logarithmic function [tex]\( f(x) \)[/tex], the range is:
[tex]\[ y \in (-\infty, \infty) \][/tex]
### Conclusion
In summary:
- Domain of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
By recognizing the nature of logarithmic functions and examining the given data points, you can accurately graph [tex]\( f(x) \)[/tex] and determine its domain and range.
To graph the logarithmic function [tex]\( f(x) \)[/tex] with the given points, you can plot the points [tex]\((x,y)\)[/tex] on a suitable coordinate plane. The given points are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline \frac{1}{125} & -3 \\ \hline \frac{1}{25} & -2 \\ \hline \frac{1}{5} & -1 \\ \hline 1 & 0 \\ \hline 5 & 1 \\ \hline 25 & 2 \\ \hline 125 & 3 \\ \hline \end{array} \][/tex]
When you plot these points, you will observe that they lie on a curve typical of a logarithmic function. The characteristic shape of a logarithmic function is such that it increases slowly for small values of [tex]\( x \)[/tex], passes through the point (1, 0), and increases more rapidly as [tex]\( x \)[/tex] grows larger.
### Steps to Plot the Points
1. Plot the points [tex]\((\frac{1}{125}, -3)\)[/tex], [tex]\((\frac{1}{25}, -2)\)[/tex], [tex]\((\frac{1}{5}, -1)\)[/tex], [tex]\((1, 0)\)[/tex], [tex]\((5, 1)\)[/tex], [tex]\((25, 2)\)[/tex], and [tex]\((125, 3)\)[/tex].
2. Use a smooth curve to connect these points, ensuring that the curve passes through each plotted point.
3. Label your axes. Typically, it is useful to label the x-axis with a logarithmic scale in this case for better visualization since x-values span a broad range from [tex]\(\frac{1}{125}\)[/tex] to [tex]\(125\)[/tex].
### Determining the Domain
The logarithmic function [tex]\( f(x) = \log_b(x) \)[/tex] (for any base [tex]\( b \)[/tex]) is only defined for [tex]\( x > 0 \)[/tex]. This is because you cannot take the logarithm of a non-positive number.
Thus, the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ x \in (0, \infty) \][/tex]
### Determining the Range
For the given [tex]\( y \)[/tex]-values, we observe that they span from [tex]\(-3\)[/tex] to [tex]\(3\)[/tex]. However, logarithmic functions are not restricted to this specific interval; they can take any real number value given appropriate [tex]\( x \)[/tex]-values.
Therefore, for the general logarithmic function [tex]\( f(x) \)[/tex], the range is:
[tex]\[ y \in (-\infty, \infty) \][/tex]
### Conclusion
In summary:
- Domain of [tex]\( f(x) \)[/tex]: [tex]\( (0, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: [tex]\( (-\infty, \infty) \)[/tex]
By recognizing the nature of logarithmic functions and examining the given data points, you can accurately graph [tex]\( f(x) \)[/tex] and determine its domain and range.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.